被人类带到太空的微生物,如何生存?
除此之外,科学家们还有更宏远的计划——如何借助微生物构造人造生态系统,让人类探索太空的步伐走得更远。虽然植物可以辅助我们生产氧气、回收废物,但是微生物诸如固氮菌、真菌、蓝藻等等,在生态系统中也有不可替代的地位。如何合理设计、引入这些微生物,和植物、动物一起构建生态系统,将会是未来的一个重要挑战。
从1966年第一次的微生物进入太空开始,太空微生物的相关研究一直都在进行:如何更好地避免微生物的危害,又要怎么样发挥出微生物育种最大的优势?也许这小小的微生物,就是我们未来太空探索的关键所在呢。
参考资料
Horneck G, Klaus D M, Mancinelli R L. Space microbiology[J]. Microbiology and Molecular Biology Reviews, 2010, 74(1): 121-156.
陈振鸿, 刘长庭. 太空环境对细菌的影响及作用机制[J]. 解放军医学院学报, 2014, 35(7): 763-765.
Hotchin J, Lorenz P, Hemenway C L. The survival of terrestrial microorganisms in space at orbital altitudes during Gemini satellite experiments[J]. Life sciences and space research, 1968, 6: 108-114.
Lynch S V, Brodie E L, Matin A. Role and regulation of σs in general resistance conferred by low-shear simulated microgravity in Escherichia coli[J]. Journal of bacteriology, 2004, 186(24): 8207-8212.
Moissl-Eichinger C, Cockell C, Rettberg P. Venturing into new realms? Microorganisms in space[J]. FEMS microbiology reviews, 2016, 40(5): 722-737.
Wilson J W, Ott C M, Zu Bentrup K H, et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq[J]. Proceedings of the National Academy of Sciences, 2007, 104(41): 16299-16304.
Liu C. The theory and application of space microbiology: China's experiences in space experiments and beyond[J]. Environmental microbiology, 2017, 19(2): 426-433.
Liang J, Jianping L I N, Zhinan X U, et al. Space-flight mutation of Streptomyces gilvosporeus for enhancing natamycin production[J]. Chinese Journal of Chemical Engineering, 2007, 15(5): 720-724.
本文来自微信公众号:biokiwi(ID:biokiwi),作者:无奶树