如何使用JDBC API更改现有表中列的数据类型?
您可以使用ALTERTABLE命令更改表中列的数据类型。
语法
ALTER TABLE Sales MODIFY COLUMN column_name column_new_datatuype
假设我们在数据库中有一个名为Sales的表,其中有7列,分别是ProductName,CustomerName,DispatchDate,DeliveryTime,Price,Location和ID,其描述为:
+--------------+--------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------------+--------------+------+-----+---------+-------+ | ProductName | varchar(255) | YES | | NULL | | | CustomerName | varchar(255) | YES | | NULL | | | DispatchDate | date | YES | | NULL | | | DeliveryTime | time | YES | | NULL | | | Price | int(11) | YES | | NULL | | | Location | varchar(255) | YES | | NULL | | | ID | int(11) | NO | | NULL| | | +--------------+--------------+------+-----+---------+-------+
以下JDBC程序建立与MySQL数据库的连接,并将列位置的数据类型从varchar更改为text。
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
public class ChangingDatatype {
public static void main(String args[]) throws SQLException {
//注册驱动程序
DriverManager.registerDriver(new com.mysql.jdbc.Driver());
//获得连接
String mysqlUrl = "jdbc:mysql://localhost/mydatabase";
Connection con = DriverManager.getConnection(mysqlUrl, "root", "password");
System.out.println("Connection established......");
//创建语句
Statement stmt = con.createStatement();
//查询更改表
String query = "ALTER TABLE Sales MODIFY COLUMN Location Text";
//执行查询
stmt.executeUpdate(query);
System.out.println("Column datatype changed......");
}
}输出结果
Connection established...... Column datatype changed......
由于我们已经更改了位置列的类型,因此,如果使用describe命令获取Sales表的描述,则可以观察到名为location的列的数据类型已从varchar更改为text。
mysql> describe sales; +--------------+--------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------------+--------------+------+-----+---------+-------+ | ProductName | varchar(255) | YES | | NULL | | | CustomerName | varchar(255) | YES | | NULL | | | DispatchDate | date | YES | | NULL | | | DeliveryTime | time | YES | | NULL | | | Price | int(11) | YES | | NULL | | | Location | text | YES | | NULL | | | ID | int(11) | NO | | NULL | | +--------------+--------------+------+-----+---------+-------+ 7 rows in set (0.00 sec)