如何使用JDBC API更改现有表中列的数据类型?
您可以使用ALTERTABLE命令更改表中列的数据类型。
语法
ALTER TABLE Sales MODIFY COLUMN column_name column_new_datatuype
假设我们在数据库中有一个名为Sales的表,其中有7列,分别是ProductName,CustomerName,DispatchDate,DeliveryTime,Price,Location和ID,其描述为:
+--------------+--------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------------+--------------+------+-----+---------+-------+ | ProductName | varchar(255) | YES | | NULL | | | CustomerName | varchar(255) | YES | | NULL | | | DispatchDate | date | YES | | NULL | | | DeliveryTime | time | YES | | NULL | | | Price | int(11) | YES | | NULL | | | Location | varchar(255) | YES | | NULL | | | ID | int(11) | NO | | NULL| | | +--------------+--------------+------+-----+---------+-------+
以下JDBC程序建立与MySQL数据库的连接,并将列位置的数据类型从varchar更改为text。
import java.sql.Connection; import java.sql.DriverManager; import java.sql.SQLException; import java.sql.Statement; public class ChangingDatatype { public static void main(String args[]) throws SQLException { //注册驱动程序 DriverManager.registerDriver(new com.mysql.jdbc.Driver()); //获得连接 String mysqlUrl = "jdbc:mysql://localhost/mydatabase"; Connection con = DriverManager.getConnection(mysqlUrl, "root", "password"); System.out.println("Connection established......"); //创建语句 Statement stmt = con.createStatement(); //查询更改表 String query = "ALTER TABLE Sales MODIFY COLUMN Location Text"; //执行查询 stmt.executeUpdate(query); System.out.println("Column datatype changed......"); } }
输出结果
Connection established...... Column datatype changed......
由于我们已经更改了位置列的类型,因此,如果使用describe命令获取Sales表的描述,则可以观察到名为location的列的数据类型已从varchar更改为text。
mysql> describe sales; +--------------+--------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +--------------+--------------+------+-----+---------+-------+ | ProductName | varchar(255) | YES | | NULL | | | CustomerName | varchar(255) | YES | | NULL | | | DispatchDate | date | YES | | NULL | | | DeliveryTime | time | YES | | NULL | | | Price | int(11) | YES | | NULL | | | Location | text | YES | | NULL | | | ID | int(11) | NO | | NULL | | +--------------+--------------+------+-----+---------+-------+ 7 rows in set (0.00 sec)