对Python3+gdal 读取tiff格式数据的实例讲解
1、遇到的问题:numpy版本
im_data=dataset.ReadAsArray(0,0,im_width,im_height)#获取数据这句报错
升级numpy:pipinstall-Unumpy但是提示已经是最新版本
解决:卸载numpy重新安装
2.直接从压缩包中读取tiff图像
参考:http://gdal.org/gdal_virtual_file_systems.html#gdal_virtual_file_systems_vsizip
当前情况是2层压缩:/'/vsitar/C:/Users/summer/Desktop/a_PAN1.tiff'
3.读tiff
defreadTif(fileName): merge_img=0 driver=gdal.GetDriverByName('GTiff') driver.Register() dataset=gdal.Open(fileName) ifdataset==None: print(fileName+"掩膜失败,文件无法打开") return im_width=dataset.RasterXSize#栅格矩阵的列数 print('im_width:',im_width) im_height=dataset.RasterYSize#栅格矩阵的行数 print('im_height:',im_height) im_bands=dataset.RasterCount#波段数 im_geotrans=dataset.GetGeoTransform()#获取仿射矩阵信息 im_proj=dataset.GetProjection()#获取投影信息 ifim_bands==1: band=dataset.GetRasterBand(1) im_data=dataset.ReadAsArray(0,0,im_width,im_height)#获取数据 cdata=im_data.astype(np.uint8) merge_img=cv2.merge([cdata,cdata,cdata]) cv2.imwrite('C:/Users/summer/Desktop/a.jpg',merge_img) # elifim_bands==4: # #im_data=dataset.ReadAsArray(0,0,im_width,im_height)#获取数据 # #im_blueBand=im_data[0,0:im_width,0:im_height]#获取蓝波段 # #im_greenBand=im_data[1,0:im_width,0:im_height]#获取绿波段 # #im_redBand=im_data[2,0:im_width,0:im_height]#获取红波段 # ##im_nirBand=im_data[3,0:im_width,0:im_height]#获取近红外波段 # #merge_img=cv2.merge([im_redBand,im_greenBand,im_blueBand]) # #zeros=np.zeros([im_height,im_width],dtype="uint8") # #data1=im_redBand.ReadAsArray # band1=dataset.GetRasterBand(1) # band2=dataset.GetRasterBand(2) # band3=dataset.GetRasterBand(3) # band4=dataset.GetRasterBand(4) data1=band1.ReadAsArray(0,0,im_width,im_height).astype(np.uint16)#r#获取数据 data2=band2.ReadAsArray(0,0,im_width,im_height).astype(np.uint16)#g#获取数据 data3=band3.ReadAsArray(0,0,im_width,im_height).astype(np.uint16)#b#获取数据 data4=band4.ReadAsArray(0,0,im_width,im_height).astype(np.uint16)#R#获取数据 # print(data1[1][45]) # output1=cv2.convertScaleAbs(data1,alpha=(255.0/65535.0)) # print(output1[1][45]) # output2=cv2.convertScaleAbs(data2,alpha=(255.0/65535.0)) # output3=cv2.convertScaleAbs(data3,alpha=(255.0/65535.0)) merge_img1=cv2.merge([output3,output2,output1])#BGR cv2.imwrite('C:/Users/summer/Desktop/merge_img1.jpg',merge_img1)
4.图像裁剪:
importcv2 importnumpyasnp importos tiff_file='./try_img/2.tiff' save_folder='./try_img_re/' ifnotos.path.exists(save_folder): os.makedirs(save_folder) tif_img=cv2.imread(tiff_file) width,height,channel=tif_img.shape #printheight,width,channel:690873003 threshold=1000 overlap=100 step=threshold-overlap x_num=width/step+1 y_num=height/step+1 printx_num,y_num N=0 yj=0 forxiinrange(x_num): foryjinrange(y_num): #printxi ifyj<=y_num: printyj x=step*xi y=step*yj wi=min(width,x+threshold) hi=min(height,y+threshold) #printwi,hi ifwi-x<1000andhi-y<1000: im_block=tif_img[wi-1000:wi,hi-1000:hi] elifwi-x>1000andhi-y<1000: im_block=tif_img[x:wi,hi-1000:hi] elifwi-x<1000andhi-y>1000: im_block=tif_img[wi-1000:wi,y:hi] else: im_block=tif_img[x:wi,y:hi] cv2.imwrite(save_folder+'try'+str(N)+'.jpg',im_block) N+=1
以上这篇对Python3+gdal读取tiff格式数据的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持毛票票。