Python - 使用 filter() 创建列的子集
要创建列的子集,我们可以使用filter().通过这个,我们可以使用like运算符过滤具有相似模式的列值。首先,让我们创建一个包含3列的DataFrame-
dataFrame = pd.DataFrame({"Product": ["SmartTV", "ChromeCast", "Speaker", "Earphone"],"Opening_Stock": [300, 700, 1200, 1500],"Closing_Stock": [200, 500, 1000, 900]})现在,让我们创建一个具有多列的子集-
dataFrame[['Opening_Stock','Closing_Stock']]
创建一个具有类似模式名称的子集-
dataFrame.filter(like='Open')
示例
以下是完整的代码-
import pandas as pd
dataFrame = pd.DataFrame({"Product": ["SmartTV", "ChromeCast", "Speaker", "Earphone"],"Opening_Stock": [300, 700, 1200, 1500],"Closing_Stock": [200, 500, 1000, 900]})
print"DataFrame...\n",dataFrame
print"\nDisplaying a subset using indexing operator:\n",dataFrame[['Product']]
print"\nDisplaying a subset with multiple columns:\n",dataFrame[['Opening_Stock','Closing_Stock']]
print"\nDisplaying a subset with similarly patterned names:\n",dataFrame.filter(like='Open')输出结果这将产生以下输出-
DataFrame...
   Closing_Stock   Opening_Stock    Product
0           200             300     SmartTV
1           500             700  ChromeCast
2          1000            1200     Speaker
3           900            1500    Earphone
Displaying a subset using indexing operator:
      Product
0     SmartTV
1  ChromeCast
2     Speaker
3    Earphone
Displaying a subset with multiple columns:
   Opening_Stock   Closing_Stock
0         300             200
1         700             500
2        1200            1000
3        1500             900
Displaying a subset with similarly patterned names:
   Opening_Stock
0          300
1          700
2       1200
3 1500