傅里叶变换
傅里叶变换是一种将信号从连续时域变换到相应频域,反之亦然的变换技术。
连续时间函数$$的傅立叶变换x(t)定义为,
$$\mathrm{X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omegat}dt...(1)}$$
逆傅里叶变换
连续时间函数的逆傅里叶变换定义为,
$$\mathrm{x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)\:e^{j\omegat}d\omega...(2)}$$
$X(\omega)$和$x(t)$的方程(1)和(2)被称为傅立叶变换对,可以表示为-
$$\mathrm{X(\omega)=F[x(t)]}$$
和
$$\mathrm{x(t)=F^{-1}[X(\omega)]}$$
傅里叶变换对表
功能,x(t) | 傅立叶变换,X(ω) | $\delta(t)$
| 1 |
$\delta(t-t_{0})$
| $e^{-j\omegat_{0}}$
|
1 | $2\pi\delta(\omega)$
|
u(t) | $\pi\delta(\omega)+\frac{1}{j\omega}$
|
$\sum_{n=−\infty}^{\infty}\delta(t-nT)$
| $\omega_{0}\sum_{n=−\infty}^{\infty}\delta(\omega-n\omega_{0});\:\:\left(\omega_{0}=\frac{2\pi}{T}\right)$
|
sgn(t)
| $\frac{2}{j\omega}$
|
$e^{j\omega_{0}t}$
| $2\pi\delta(\omega-\omega_{0})$
|
$cos\:\omega_{0}t$
| $\pi[\delta(\omega-\omega_{0})+\delta(\omega+\omega_{0})]$
|
$sin\:\omega_{0}t$
| $-j\pi[\delta(\omega-\omega_{0})-\delta(\omega+\omega_{0})]$
|
$e^{-at}u(t);\:\:\:a>0$
| $\frac{1}{a+j\omega}$
|
$t\:e^{at}u(t);\:\:\:a>0$
| $\frac{1}{(a+j\omega)^{2}}$
|
$e^{-|at|};\:\:a>0$
| $\frac{2a}{a^{2}+\omega^{2}}$
|
$e^{-|t|}$
| $\frac{2}{1+\omega^{2}}$
|
$\frac{1}{\pit}$
| $-j\:sgn(\omega)$
|
$\frac{1}{a^{2}+t^{2}}$
| $\frac{\pi}{a}e^{-a|\omega|}$
|
$\Pi(\frac{t}{τ})$
| $τ\:sinc(\frac{\omegaτ}{2})$
|
$\Delta(\frac{t}{τ})$
| $\frac{τ}{2}sinC^{2}(\frac{\omegaτ}{4})$
|
$\frac{sin\:at}{\pit}$
| $P_{a}(\omega)=\begin{cases}1&for\:|\omega|\:<a\\0&for\:|\omega|\:>a\end{cases}$
|
$cos\:\omega_{0}t\:u(t)$
| $\frac{\pi}{2}[\delta(\omega-\omega_{0})+\delta(\omega+\omega_{0})]+\left[\frac{j\omega}{(j\omega)^{2}+\omega_{0}^{2}}\right]$
|
$sin\:\omega_{0}t\:u(t)$
| $-j\frac{\pi}{2}[\delta(\omega-\omega_{0})-\delta(\omega+\omega_{0})]+\left[\frac{\omega_{0}}{(j\omega)^{2}+\omega_{0}^{2}}\right]$
|