PyTorch – 如何检查张量是否连续?
连续张量是一种张量,其元素以连续的顺序存储,它们之间不留任何空白。最初创建的张量始终是连续的张量。可以以连续的方式查看具有不同维度的张量。
张量的转置创建遵循非连续顺序的原始张量的视图。张量的转置是不连续的。
语法
Tensor.is_contiguous()
如果张量是连续的,则返回True;否则为假。
让我们举几个例子来演示如何使用这个函数来检查张量是连续的还是不连续的。
示例1
# import torch library
import torch
# define a torch tensor
A = torch.tensor([1. ,2. ,3. ,4. ,5. ,6.])
print(A)
# find a view of the above tensor
B = A.view(-1,3)
print(B)
print("id(A):", id(A))
print("id(A.view):", id(A.view(-1,3)))
# check if A or A.view() are contiguous or not
print(A.is_contiguous()) # True
print(A.view(-1,3).is_contiguous()) # True
print(B.is_contiguous()) # True输出结果tensor([1., 2., 3., 4., 5., 6.]) tensor([[1., 2., 3.], [4., 5., 6.]]) id(A): 80673600 id(A.view): 63219712 True True True
示例2
# import torch library
import torch
# create a torch tensor
A = torch.tensor([[1.,2.],[3.,4.],[5.,6.]])
print(A)
# take transpose of the above tensor
B = A.transpose(0,1)
print(B)
print("id(A):", id(A))
print("id(A.transpose):", id(A.transpose(0,1)))
# check if A or A transpose are contiguous or not
print(A.is_contiguous()) # True
print(A.transpose(0,1).is_contiguous()) # False
print(B.is_contiguous()) # False输出结果tensor([[1., 2.], [3., 4.], [5., 6.]]) tensor([[1., 3., 5.], [2., 4., 6.]]) id(A): 63218368 id(A.transpose): 99215808 True False False