使用 C++ 找到可能形成直角三角形的斜边和面积对的数量
在本文中,我们将解释如何在C++中求解形成直角三角形的斜边和面积的可能对数。
我们需要确定斜边和面积(H,A)的所有可能对的数量,以形成一个直角三角形,其中H为斜边,A为面积。
在这个例子中-
x=直角三角形的底
y=直角三角形的高度
H=直角三角形的斜边
我们知道直角三角形的面积,
A=(x*y)/2
或者
4*A2=(x*y)2 ……(1)
我们也知道
x2+y2=H2……(2)
求解(1)&(2)
4*A2=x2(H2-x2)
求解x2中的二次方程并将D(判别式)>=0(x存在)
我们得到,H2>=4*A(直角三角形存在的条件)
这是示例-
Input : array H[ ] = { 3, 6, 8 } : A[ ] = { 2, 31, 12 }
Output : 4
Explanation : possible pairs of Hypotenuse and Area ( H, A ) are ( 3, 2 ), ( 6, 2 ), ( 8, 2 ) and ( 8, 12 ).
Input : array H[ ] = { 2, 5, 9 } : A[ ] = { 3, 11, 7 }
Output : 4
Explanation : possible pairs of Hypotenuse and Area ( H, A ) are possible pairs of Hypotenuse and Area ( H, A ) are ( 5, 3 ), ( 9, 3 ), ( 9, 11 ) and ( 9, 7 ).寻找解决方案的方法
现在我们将使用两种不同的方法来执行给定的任务-
蛮力方法
在这个简单的方法中,我们找到所有可能的斜边和面积对(H,A),检查它们是否满足条件,h2>=4*A与否,并对找到的满足该条件的每一对进行计数。
示例
#include <iostream>
using namespace std;
int main(){
int H[ ] = { 2,5,9}; //斜边数组
int s1 = sizeof(H)/sizeof(H[0]);
int A[ ] = { 3, 11, 7};//区域数组
int s2 = sizeof(A)/sizeof(A[0]);
int count = 0;//将计数初始化为0
//找到所有可能的对
for (int i = 0; i < s1; i++) {
for (int j = 0; j < s2; j++) {
//检查当前对是否满足条件
if (H[i] * H[i] >= 4 * A[j]){
count++;
}
}
}
cout << "Number of possible pairs of ( H, A ): " << count ;
return 0;
}输出结果Number of possible pairs of ( H, A ): 4
解释
在这段代码中,我们使用count变量来保持满足方程的对的计数,并使用嵌套循环来生成(H,A)对。此代码的时间复杂度为O(n2),这不是一种有效的方法。让我们了解第二种方法。
有效的方法
在这种方法中,我们首先按升序对两个数组进行排序,然后我们找到任何斜边长度以找到检查H2>4*A时的最大面积。
示例
#include <bits/stdc++.h>
using namespace std;
int main (){
int H[] = { 2, 5, 9 };
int s1 = sizeof (H) / sizeof (H[0]);
int A[] = { 3, 11, 7 };
int s2 = sizeof (A) / sizeof (A[0]);
int count = 0;
//对两个数组进行排序
sort (H, H + s1);
sort (A, A + s2);
int temp = -1;
for (int i = 0; i < s1; i++){
//应用二分搜索
//每个斜边长度
int flag1 = 0;
int flag2 = s2 - 1;
while (flag1 <= flag2){
int mid = flag1 + (flag2 - flag1) / 2;
if ((H[i] * H[i]) >= (4 * A[mid])){
temp = mid;
flag1 = mid + 1;
}
else{
flag2 = mid - 1;
}
}
if (temp != -1){//检查我们是否有任何可能的区域
count += temp + 1;
}
}
cout << "Number of possible pairs of (H, A): " << count;
return 0;
}输出结果Number of possible pairs of ( H, A ): 4
以上代码说明
在这段代码中,我们首先按升序对两个数组进行排序,然后我们使用二分搜索检查每个可能的长度以找到最大区域。
假设最大面积在面积A[]的数组中的索引3处找到,那么所有小于索引3的面积也将满足方程,因此我们可以形成3个可能的对。
结论
在本文中,我们解决了一个问题,以找出用于制作直角三角形的斜边和面积对的数量。我们应用了Bruteforce方法,其时间复杂度为O(n2),以及Efficient方法,其时间复杂度为O(s1log(s2))。希望这篇文章对您有所帮助。