Python Pandas - 当多索引中的所有级别均为 NaN 时删除该值
要在Multi-index中的所有级别均为NaN时删除该值,请使用该方法。设置参数how与valueall。multiIndex.dropna()
首先,导入所需的库——
import pandas as pd import numpy as np
创建一个包含所有NaN值的多索引。names参数设置索引中级别的名称-
multiIndex = pd.MultiIndex.from_arrays([[np.nan, np.nan], [np.nan, np.nan]], names=['a', 'b'])
当Multi-index中的所有级别iareNaN时删除该值。对于所有NaN值,dropna()如果的“how”参数dropna()设置为“all”,则将删除所有值-
print("\nDropping the values when all levels are NaN...\n",multiIndex.dropna(how='all'))
示例
以下是代码-
import pandas as pd import numpy as np #Createamulti-indexwithallNaNvalues #Thenamesparametersetsthenamesforthelevelsintheindex multiIndex = pd.MultiIndex.from_arrays([[np.nan, np.nan], [np.nan, np.nan]], names=['a', 'b']) #displaythemulti-index print("Multi-index...\n", multiIndex) #DropthevaluewhenalllevelsiareNaNinaMulti-index #WithallNaNvalues,thedropna()willdropallthevalues,ifthe # "how" parameter of the dropna() is set "all" print("\nDropping the values when all levels are NaN...\n",multiIndex.dropna(how='all'))输出结果
这将产生以下输出-
Multi-index... MultiIndex([(nan, nan),(nan, nan)],names=['a', 'b']) Dropping the values when all levels are NaN... MultiIndex([], names=['a', 'b'])