Python Pandas - 在 MultiIndex 中使用级别名称重新排列级别
要在MultiIndex中使用级别名称重新排列级别,请使用Pandas中的方法。传递要重新排列的级别(级别名称)作为参数。MultiIndex.reorder_levels()
首先,导入所需的库-
import pandas as pd
MultiIndex是Pandas对象的多级或分层索引对象。创建数组-
arrays = [[2, 4, 3, 1], ['Peter', 'Chris', 'Andy', 'Jacob'], [50, 30, 40, 70]]
“names”参数设置每个索引级别的名称。将from_arrays()被用来创建一个多指标-
multiIndex = pd.MultiIndex.from_arrays(arrays, names=('rank', 'student', 'points'))重新排序MultiIndex的级别。“order”参数用于在表单中设置级别名称以重新排序级别-
print("\nReorder levels in MultiIndex using level name...\n",multiIndex.reorder_levels(order=['student','rank','points']))示例
以下是代码-
import pandas as pd
#MultiIndexisamulti-level,orhierarchical,indexobjectforpandasobjects
#Createarrays
arrays = [[2, 4, 3, 1], ['Peter', 'Chris', 'Andy', 'Jacob'], [50, 30, 40, 70]]
# The "names" parameter sets the names for each of the index levels
#Thefrom_arrays()isusedtocreateaMultiIndex
multiIndex = pd.MultiIndex.from_arrays(arrays, names=('rank', 'student', 'points'))
#displaytheMultiIndex
print("The MultiIndex...\n",multiIndex)
#getthelevelsinMultiIndex
print("\nThe levels in MultiIndex...\n",multiIndex.levels)
#swaplevelsofMultiIndexusingswaplevel()
#The1stparameteristhefirstlevelofindextobeswapped
#The2ndparameteristhesecondlevelofindextobeswapped
print("\nSwap levels in MultiIndex...\n",multiIndex.swaplevel(0,2))
#ReorderlevelsofMultiIndex
# The "order" parameter is used to set the level name in a form to reorder levels
print("\nReorder levels in MultiIndex using level name...\n",multiIndex.reorder_levels(order=['student','rank','points']))输出结果这将产生以下输出-
The MultiIndex...
MultiIndex([(2, 'Peter', 50),
(4, 'Chris', 30),
(3, 'Andy', 40),
(1, 'Jacob', 70)],
names=['rank', 'student', 'points'])
The levels in MultiIndex...
[[1, 2, 3, 4], ['Andy', 'Chris', 'Jacob', 'Peter'], [30, 40, 50, 70]]
Swap levels in MultiIndex...
MultiIndex([('Peter', 2, 50),
('Chris', 4, 30),
( 'Andy', 3, 40),
('Jacob', 1, 70)],
names=['student', 'rank', 'points'])
Reorder levels in MultiIndex using level name...
MultiIndex([('Peter', 2, 50),
('Chris', 4, 30),
( 'Andy', 3, 40),
('Jacob', 1, 70)],
names=['student', 'rank', 'points'])