C ++程序检查图形是否为DAG
有向无环图(DAG)是有向图,没有连接其他边的循环。该图的边缘有一种方式。这是一个C++程序,用于检查图形是否为DAG。
算法
BeginFunction checkDAG(int n): intialize count = 0
intialize size = n - 1
for i = 0 to n-1
if (count == size)
return 1
done
if (arr[i].ptr == NULL)
increment count
for j = 0 to n-1
while (arr[j].ptr != NULL)
if ((arr[j].ptr)->d == (arr[i].ptr)->d)
(arr[j].ptr)->d = -1
done
arr[i].ptr = (arr[i].ptr)->next
done
done
done
done
return 0
End范例程式码
#include<iostream>
using namespace std;
int c = 0;
struct ad_list { //A structure of type adj_list
int d;
ad_list *next;
}
*np = NULL, *np1 = NULL, *p = NULL, *q = NULL;
struct Gr { //A structure of type Gr
int v;
ad_list *ptr;
}
arr[6];
void addRevEdge(int s, int d) { //add reverse edges in the graph
np1 = new ad_list;
np1->d = s;
np1->next = NULL;
if (arr[d].ptr == NULL) {
arr[d].ptr = np1;
q = arr[d].ptr;
q->next = NULL;
} else {
q = arr[d].ptr;
while (q->next != NULL) {
q = q->next;
}
q->next = np1;
}
}
void addEdge(int s, int d) { // add edges in the graph
np = new ad_list;
np->d = d;
np->next = NULL;
if (arr[s].ptr == NULL) {
arr[s].ptr = np;
p = arr[s].ptr;
p->next = NULL;
} else {
p = arr[s].ptr;
while (p->next != NULL) {
p = p->next;
}
p->next = np;
}
}
void print_g(int n) {
for (int i = 0; i < n; i++) {
cout << "Adjacency List of " << arr[i].v << ": ";
while (arr[i].ptr != NULL) {
cout << (arr[i].ptr)->d<< " ";
arr[i].ptr = (arr[i].ptr)->next;
}
cout << endl;
}
}
int checkDAG(int n) {
int count = 0;
int size = n - 1;
for (int i = 0; i < n; i++) {
if (count == size) {
return 1;
}
if (arr[i].ptr == NULL) {
count++;
for (int j = 0; j < n; j++) {
while (arr[j].ptr != NULL) {
if ((arr[j].ptr)->d == (arr[i].ptr)->d) {
(arr[j].ptr)->d = -1;
}
arr[i].ptr = (arr[i].ptr)->next;
}
}
}
}
return 0;
}
int main() {
int v = 4;
cout << "Number of vertices: " << v << endl;
for (int i = 0; i < v; i++) {
arr[i].v = i;
arr[i].ptr = NULL;
}
addEdge(1, 0);
addEdge(3, 1);
addEdge(2, 1);
addEdge(0, 3);
addEdge(4, 1);
print_g(v);
cout << "The given graph is 'Directed Acyclic Graph' :";
if (checkDAG(v) == 1)
cout << " yes";
else
cout << " no";
}输出结果
Number of vertices: 4 Adjacency List of 0: 3 Adjacency List of 1: 0 Adjacency List of 2: 1 Adjacency List of 3: 1 The given graph is 'Directed Acyclic Graph' : yes