欧拉定理的C ++程序
这是一个C++程序,它演示了Euler定理的实现。数字和模数必须是互质的,才能存在模数乘法逆。
算法
Begin
Take input to find modular multiplicative inverse
Take input as modular value
Perform inverse array function:
modInverse(x + 1, 0);
modInverse[1] = 1;
for i = 2 to x
modInverse[i] = (-(y / i) * modInverse[y mod i]) mod y + y
return modInverse
End范例程式码
#include <iostream>
#include <vector>
using namespace std;
vector<int> inverseArray(int x, int y) {
vector<int> modInverse(x + 1, 0);
modInverse[1] = 1;
for (int i = 2; i <= x; i++) {
modInverse[i] = (-(y / i) * modInverse[y % i]) % y + y;
}
return modInverse;
}
int main() {
vector<int>::iterator it;
int a, m;
cout<<"Enter number to find modular multiplicative inverse: ";
cin>>a;
cout<<"Enter Modular Value: ";
cin>>m;
cout<<inverseArray(a, m)[a]<<endl;
}输出结果
Enter number to find modular multiplicative inverse: 26 Enter Modular Value: 7 7