欧拉定理的C ++程序
这是一个C++程序,它演示了Euler定理的实现。数字和模数必须是互质的,才能存在模数乘法逆。
算法
Begin Take input to find modular multiplicative inverse Take input as modular value Perform inverse array function: modInverse(x + 1, 0); modInverse[1] = 1; for i = 2 to x modInverse[i] = (-(y / i) * modInverse[y mod i]) mod y + y return modInverse End
范例程式码
#include <iostream> #include <vector> using namespace std; vector<int> inverseArray(int x, int y) { vector<int> modInverse(x + 1, 0); modInverse[1] = 1; for (int i = 2; i <= x; i++) { modInverse[i] = (-(y / i) * modInverse[y % i]) % y + y; } return modInverse; } int main() { vector<int>::iterator it; int a, m; cout<<"Enter number to find modular multiplicative inverse: "; cin>>a; cout<<"Enter Modular Value: "; cin>>m; cout<<inverseArray(a, m)[a]<<endl; }
输出结果
Enter number to find modular multiplicative inverse: 26 Enter Modular Value: 7 7