Jarvis March算法
JarvisMarch算法用于从一组给定的数据点中检测凸包的角点。
从数据集的最左端开始,我们通过逆时针旋转将这些点保留在凸包中。从当前点开始,我们可以通过从当前点检查这些点的方向来选择下一个点。当角度最大时,将选择该点。完成所有点后,当下一个点是起点时,停止算法。
输入输出
Input: Set of points: {(-7,8), (-4,6), (2,6), (6,4), (8,6), (7,-2), (4,-6), (8,-7),(0,0), (3,- 2),(6,-10),(0,6),(-9,-5),(-8,-2),(-8,0),(-10,3),(-2,2),(-10,4)} Output: Boundary points of convex hull are: (-9, -5) (6, -10) (8, -7) (8, 6) (-7, 8) (-10, 4) (-10, 3)
算法
findConvexHull(points, n)
输入:点数,点数。
输出:凸包的角点。
Begin start := points[0] for each point i, do if points[i].x < start.x, then // get the left most point start := points[i] done current := start add start point to the result set. define colPts set to store collinear points while true, do //start an infinite loop next := points[i] for all points i except 0th point, do if points[i] = current, then skip the next part, go for next iteration val := cross product of current, next, points[i] if val > 0, then next := points[i] clear the colPts array else if cal = 0, then if next is closer to current than points[i], then add next in the colPts next := points[i] else add points[i] in the colPts done add all items in the colPts into the result if next = start, then break the loop insert next into the result current := next done return result End
示例
#include<iostream> #include<set> #include<vector> using namespace std; struct point { //define points for 2d plane int x, y; bool operator==(point p2) { if(x == p2.x && y == p2.y) return 1; return 0; } bool operator<(const point &p2)const { //dummy compare function used to sort in set return true; } }; int crossProduct(point a, point b, point c) { //finds the place of c from ab vector int y1 = a.y - b.y; int y2 = a.y - c.y; int x1 = a.x - b.x; int x2 = a.x - c.x; return y2*x1 - y1*x2; //if result < 0, c in the left, > 0, c in the right, = 0, a,b,c are collinear } int distance(point a, point b, point c) { int y1 = a.y - b.y; int y2 = a.y - c.y; int x1 = a.x - b.x; int x2 = a.x - c.x; int item1 = (y1*y1 + x1*x1); int item2 = (y2*y2 + x2*x2); if(item1 == item2) return 0; //when b and c are in same distance from a else if(item1 < item2) return -1; //when b is closer to a return 1; //when c is closer to a } set<point>findConvexHull(point points[], int n) { point start = points[0]; for(int i = 1; i<n; i++) { //find the left most point for starting if(points[i].x < start.x) start = points[i]; } point current = start; set<point> result; //set is used to avoid entry of duplicate points result.insert(start); vector<point> *collinearPoints = new vector<point>; while(true) { point nextTarget = points[0]; for(int i = 1; i<n; i++) { if(points[i] == current) //when selected point is current point, ignore rest part continue; int val = crossProduct(current, nextTarget,points[i]); if(val > 0) { //when ith point is on the left side nextTarget = points[i]; collinearPoints = new vector<point>; //reset collinear points }else if(val == 0) { //if three points are collinear if(distance(current, nextTarget, points[i]) < 0) { //add closer one to collinear list collinearPoints->push_back(nextTarget); nextTarget = points[i]; }else{ collinearPoints->push_back(points[i]); //when ith point is closer or same as nextTarget } } } vector<point>::iterator it; for(it = collinearPoints->begin(); it != collinearPoints->end(); it++) { result.insert(*it); //add allpoints in collinear points to result set } if(nextTarget == start) //when next point is start it means, the area covered break; result.insert(nextTarget); current = nextTarget; } return result; } int main() { point points[] = {{-7,8},{-4,6},{2,6},{6,4},{8,6},{7,-2},{4,-6},{8,-7},{0,0}, {3,-2},{6,-10},{0,-6},{-9,-5},{-8,-2},{-8,0},{-10,3},{-2,2},{-10,4}}; int n = 18; set<point> result; result = findConvexHull(points, n); cout << "Boundary points of convex hull are: "<<endl; set<point>::iterator it; for(it = result.begin(); it!=result.end(); it++) cout << "(" << it->x << ", " <<it->y <<") "; }
输出结果
Boundary points of convex hull are: (-9, -5) (6, -10) (8, -7) (8, 6) (-7, 8) (-10, 4) (-10, 3)