在C ++中重复删除回文子字符串后删除字符串的最少步骤
问题陈述
给定一个仅包含整数字符的字符串。我们需要以最少的步骤删除此字符串的所有字符,而在一步中,我们可以删除作为回文的子字符串。删除子字符串后,其余部分将串联在一起。
示例
如果输入字符串为3441213,则至少需要2个步骤
首先从字符串中删除121。现在剩下的字符串是3443
删除剩下的字符串,因为它是回文
算法
我们可以使用动态编程来解决这个问题
1. Let dp[i][j] denotes the number of steps it takes to delete the substring s[i, j] 2. Each character will be deleted alone or as part of some substring so in the first case we will delete the character itself and call subproblem (i+1, j) 3. In the second case we will iterate over all occurrence of the current character in right side, if K is the index of one such occurrence then the problem will reduce to two subproblems (i+1, K – 1) and (K+1, j) 4. We can reach to this subproblem (i+1, K-1) because we can just delete the same character and call for mid substring 5. We need to take care of a case when first two characters are same in that case we can directly reduce to the subproblem (i+2, j)
示例
#include <bits/stdc++.h> using namespace std; int getMinRequiredSteps(string str) { int n = str.length(); int dp[n + 1][n + 1]; for (int i = 0; i <= n; i++) { for (int j = 0; j <= n; j++) { dp[i][j] = 0; } } for (int len = 1; len <= n; len++) { for (int i = 0, j = len - 1; j < n; i++, j++) { if (len == 1) dp[i][j] = 1; else { dp[i][j] = 1 + dp[i + 1][j]; if (str[i] == str[i + 1]) { dp[i][j] = min(1 + dp[i+ 2][j], dp[i][j]); } for (int K = i + 2; K <= j; K++){ if (str[i] == str[K]) { dp[i][j] = min(dp[i+1][K-1] + dp[K+1][j], dp[i][j]); } } } } } return dp[0][n - 1]; } int main() { string str = "3441213"; cout << "Minimum required steps: " << getMinRequiredSteps(str) << endl; return 0; }
当您编译并执行上述程序时。它产生以下输出
输出结果
Minimum required steps: 2