实现B +树的C ++程序
B+树是二叉搜索树的概括,一个节点可以有两个以上的子节点。它基本上是一种自平衡树数据结构,用于维护排序的数据,并允许在对数时间顺序访问,搜索,插入和删除。
可以将其视为B树,其中每个节点仅包含键,并且在其底部通过链接叶添加了附加级别。
算法
Begin function insert() to insert the nodes into the tree: Initialize x as root. if x is leaf and having space for one more info then insert a to x. else if x is not leaf, do Find the child of x that is going to to be traversed next. If the child is not full, change x to point to the child. If the child is full, split it and change x to point to one of the two parts of the child. If a is smaller than mid key in the child, then set x as first part of the child. Else second part of the child. End
范例程式码
#include<iostream> using namespace std; struct BplusTree { int *d; BplusTree **child_ptr; bool l; int n; }*r = NULL, *np = NULL, *x = NULL; BplusTree* init()//to create nodes { int i; np = new BplusTree; np->d = new int[6];//order 6 np->child_ptr = new BplusTree *[7]; np->l = true; np->n = 0; for (i = 0; i < 7; i++) { np->child_ptr[i] = NULL; } return np; } void traverse(BplusTree *p)//traverse tree { cout<<endl; int i; for (i = 0; i < p->n; i++) { if (p->l == false) { traverse(p->child_ptr[i]); } cout << " " << p->d[i]; } if (p->l == false) { traverse(p->child_ptr[i]); } cout<<endl; } void sort(int *p, int n)//sort the tree { int i, j, t; for (i = 0; i < n; i++) { for (j = i; j <= n; j++) { if (p[i] >p[j]) { t = p[i]; p[i] = p[j]; p[j] = t; } } } } int split_child(BplusTree *x, int i) { int j, mid; BplusTree *np1, *np3, *y; np3 = init(); np3->l = true; if (i == -1) { mid = x->d[2]; x->d[2] = 0; x->n--; np1 = init(); np1->l = false; x->l = true; for (j = 3; j < 6; j++) { np3->d[j - 3] = x->d[j]; np3->child_ptr[j - 3] = x->child_ptr[j]; np3->n++; x->d[j] = 0; x->n--; } for (j = 0; j < 6; j++) { x->child_ptr[j] = NULL; } np1->d[0] = mid; np1->child_ptr[np1->n] = x; np1->child_ptr[np1->n + 1] = np3; np1->n++; r = np1; } else { y = x->child_ptr[i]; mid = y->d[2]; y->d[2] = 0; y->n--; for (j = 3; j <6 ; j++) { np3->d[j - 3] = y->d[j]; np3->n++; y->d[j] = 0; y->n--; } x->child_ptr[i + 1] = y; x->child_ptr[i + 1] = np3; } return mid; } void insert(int a) { int i, t; x = r; if (x == NULL) { r = init(); x = r; } else { if (x->l== true && x->n == 6) { t = split_child(x, -1); x = r; for (i = 0; i < (x->n); i++) { if ((a >x->d[i]) && (a < x->d[i + 1])) { i++; break; } else if (a < x->d[0]) { break; } else { continue; } } x = x->child_ptr[i]; } else { while (x->l == false) { for (i = 0; i < (x->n); i++) { if ((a >x->d[i]) && (a < x->d[i + 1])) { i++; break; } else if (a < x->d[0]) { break; } else { continue; } } if ((x->child_ptr[i])->n == 6) { t = split_child(x, i); x->d[x->n] = t; x->n++; continue; } else { x = x->child_ptr[i]; } } } } x->d[x->n] = a; sort(x->d, x->n); x->n++; } int main() { int i, n, t; cout<<"enter the no of elements to be inserted\n"; cin>>n; for(i = 0; i < n; i++) { cout<<"enter the element\n"; cin>>t; insert(t); } cout<<"traversal of constructed B tree\n"; traverse(r); }
输出结果
enter the no of elements to be inserted 10 enter the element 10 enter the element 20 enter the element 30 enter the element 40 enter the element 50 enter the element 60 enter the element 70 enter the element 80 enter the element 90 enter the element 100 traversal of constructed B tree 10 20 30 40 50 60 70 80 90 100