Dijkstra最短路径算法
主要问题与上一个相同,从起始节点到任何其他节点,找到最小的距离。在此问题中,主要区别在于该图是使用邻接矩阵表示的。(为此目的,成本矩阵和邻接矩阵相似)。
对于邻接表表示,时间复杂度为O(V^2),其中V是图形G(V,E)中的节点数
输入输出
Input: The adjacency matrix:Output: 0 to 1, Using: 0, Cost: 3 0 to 2, Using: 1, Cost: 5 0 to 3, Using: 1, Cost: 4 0 to 4, Using: 3, Cost: 6 0 to 5, Using: 2, Cost: 7 0 to 6, Using: 4, Cost: 7
算法
dijkstraShortestPath(n, dist, next, start)
输入-节点总数n,每个顶点的距离列表,存储下一个节点的下一个列表以及种子或起始顶点。
输出- 从起点到所有其他顶点的最短路径。
Begin create a status list to hold the current status of the selected node for all vertices u in V do status[u] := unconsidered dist[u] := distance from source using cost matrix next[u] := start done status[start] := considered, dist[start] := 0 and next[start] := φ while take unconsidered vertex u as distance is minimum do status[u] := considered for all vertex v in V do if status[v] = unconsidered then if dist[v] > dist[u] + cost[u,v] then dist[v] := dist[u] + cost[u,v] next[v] := u done done End
示例
#include<iostream> #define V 7 #define INF 999 using namespace std; //图的成本矩阵 int costMat[V][V] = { {0, 3, 6, INF, INF, INF, INF}, {3, 0, 2, 1, INF, INF, INF}, {6, 2, 0, 1, 4, 2, INF}, {INF, 1, 1, 0, 2, INF, 4}, {INF, INF, 4, 2, 0, 2, 1}, {INF, INF, 2, INF, 2, 0, 1}, {INF, INF, INF, 4, 1, 1, 0} }; int minimum(int *status, int *dis, int n) { int i, min, index; min = INF; for(i = 0; i<n; i++) if(dis[i] < min && status[i] == 1) { min = dis[i]; index = i; } if(status[index] == 1) return index; //minimum unconsidered vertex distance else return -1; //when all vertices considered } void dijkstra(int n, int *dist,int *next, int s) { int status[V]; int u, v; //初始化 for(u = 0; u<n; u++) { status[u] = 1; //unconsidered vertex dist[u] = costMat[u][s]; //distance from source next[u] = s; } //对于源顶点 status[s] = 2; dist[s] = 0; next[s] = -1; //-1 for starting vertex while((u = minimum(status, dist, n)) > -1) { status[u] = 2;//now considered for(v = 0; v<n; v++) if(status[v] == 1) if(dist[v] > dist[u] + costMat[u][v]) { dist[v] = dist[u] + costMat[u][v]; //update distance next[v] = u; } } } main() { int dis[V], next[V], i, start = 0; dijkstra(V, dis, next, start); for(i = 0; i<V; i++) if(i != start) cout << start << " to " << i <<", Using: " << next[i] << ", Cost: " << dis[i] << endl; }
输出结果
0 to 1, Using: 0, Cost: 3 0 to 2, Using: 1, Cost: 5 0 to 3, Using: 1, Cost: 4 0 to 4, Using: 3, Cost: 6 0 to 5, Using: 2, Cost: 7 0 to 6, Using: 4, Cost: 7