C ++程序使用矩阵幂查找斐波那契数
斐波那契数通常表示为Fn,形成一个序列,称为斐波那契数列,即;每个数字是从0和1开始的前两个数字的和。即-
F0 = 0 and F1 = 1 And Fn = Fn-1 + Fn-2for n > 1.
算法
Begin Take two 2 dimensional array Create a function and Perform matrix multiplication Create another function to find out power of matrix Create a function then to find out the Fibonacci number Multiply(arr1[2][2], arr2[2][2]) Take 4 variables a, b, c, d a = arr1[0][0] * arr2[0][0] + arr1[0][1] * arr2[1][0] b= arr1[0][0] * arr2[0][1] + arr1[0][1] * arr2[1][1] c = arr1[1][0] * arr2[0][0] + arr1[1][1] * arr2[1][0] d = arr1[1][0] * arr2[0][1] + arr1[1][1] * arr2[1][1] arr1[0][0] = a arr1[0][1] = b arr1[1][0] = c arr1[1][1] = d Power(arr1[2][2], take integer n as input) if (n == 0 or n == 1) return; arr1 [2][2] = {{1,1}, {1,0}} power(arr1, n / 2) multiply(arr1, arr1) if (n mod 2 not equal to 0) multiply(arr1, arr2) fibonacci_matrix(n) arr1[2][2] = {{1,1}, {1,0}} if n ==0 return 0 power(arr1 n - 1) return arr1[0][0] End
范例程式码
#include <iostream> using namespace std; void multiply(int F[2][2], int M[2][2]) { int a = F[0][0] * M[0][0] + F[0][1] * M[1][0]; int b= F[0][0] * M[0][1] + F[0][1] * M[1][1]; int c = F[1][0] * M[0][0] + F[1][1] * M[1][0]; int d = F[1][0] * M[0][1] + F[1][1] * M[1][1]; F[0][0] = a; F[0][1] = b; F[1][0] = c; F[1][1] = d; } void power(int F[2][2], int n) { if (n == 0 || n == 1) return; int M[2][2] = {{1,1},{1,0}}; power(F, n / 2); multiply(F, F); if (n % 2 != 0) multiply(F, M); } int fibonacci_matrix(int n) { int F[2][2] = {{1,1},{1,0}}; if (n == 0) return 0; power(F, n - 1); return F[0][0]; } int main() { int n; while (1) { cout<<"Enter the integer n to find nth fibonacci no. (enter 0 to exit):"; cin>>n; if (n == 0) break; cout<<fibonacci_matrix(n)<<endl; } return 0; }
输出结果
Enter the integer n to find nth fibonacci no. (enter 0 to exit): 2 1 Enter the integer n to find nth fibonacci no. (enter 0 to exit): 6 8 Enter the integer n to find nth fibonacci no. (enter 0 to exit): 7 13 Enter the integer n to find nth fibonacci no. (enter 0 to exit): 0