如何在R中创建几何级数序列?
几何级数级数是一个数字序列,其中可以通过将前一个数字乘以固定数字来找到第一个数字之后的所有数字。要在R中生成几何级数序列,我们可以使用seq函数。例如,通过使乘数值之差等于1到5来生成2的几何级数级数,可以发现为2^seq(0,5,by=1),输出将为1、2、4,8、16、32。
例子
2^seq(0,5,by=1) [1] 1 2 4 8 16 32 2^seq(0,5,by=2) [1] 1 4 16 2^seq(0,10,by=1) [1] 1 2 4 8 16 32 64 128 256 512 1024 2^seq(0,10,by=2) [1] 1 4 16 64 256 1024 2^seq(0,20,by=1) [1] 1 2 4 8 16 32 64 128 256 [10] 512 1024 2048 4096 8192 16384 32768 65536 131072 [19] 262144 524288 1048576 2^seq(0,20,by=2) [1] 1 4 16 64 256 1024 4096 16384 65536 [10] 262144 1048576 2^seq(0,30,by=1) [1] 1 2 4 8 16 32 [7] 64 128 256 512 1024 2048 [13] 4096 8192 16384 32768 65536 131072 [19] 262144 524288 1048576 2097152 4194304 8388608 [25] 16777216 33554432 67108864 134217728 268435456 536870912 [31] 1073741824 2^seq(0,30,by=2) [1] 1 4 16 64 256 1024 [7] 4096 16384 65536 262144 1048576 4194304 [13] 16777216 67108864 268435456 1073741824 2^seq(0,30,by=5) [1] 1 32 1024 32768 1048576 33554432 1073741824 2^seq(0,35,by=1) [1] 1 2 4 8 16 32 [7] 64 128 256 512 1024 2048 [13] 4096 8192 16384 32768 65536 131072 [19] 262144 524288 1048576 2097152 4194304 8388608 [25] 16777216 33554432 67108864 134217728 268435456 536870912 [31] 1073741824 2147483648 4294967296 8589934592 17179869184 34359738368 2^seq(0,35,by=5) [1] 1 32 1024 32768 1048576 33554432 [7] 1073741824 34359738368 2^seq(0,35,by=7) [1] 1 128 16384 2097152 268435456 34359738368 2^seq(0,39,by=1) [1] 1 2 4 8 16 [6] 32 64 128 256 512 [11] 1024 2048 4096 8192 16384 [16] 32768 65536 131072 262144 524288 [21] 1048576 2097152 4194304 8388608 16777216 [26] 33554432 67108864 134217728 268435456 536870912 [31] 1073741824 2147483648 4294967296 8589934592 17179869184 [36] 34359738368 68719476736 137438953472 274877906944 549755813888 2^seq(0,100,by=1) [1] 1.000000e+00 2.000000e+00 4.000000e+00 8.000000e+00 1.600000e+01 [6] 3.200000e+01 6.400000e+01 1.280000e+02 2.560000e+02 5.120000e+02 [11] 1.024000e+03 2.048000e+03 4.096000e+03 8.192000e+03 1.638400e+04 [16] 3.276800e+04 6.553600e+04 1.310720e+05 2.621440e+05 5.242880e+05 [21] 1.048576e+06 2.097152e+06 4.194304e+06 8.388608e+06 1.677722e+07 [26] 3.355443e+07 6.710886e+07 1.342177e+08 2.684355e+08 5.368709e+08 [31] 1.073742e+09 2.147484e+09 4.294967e+09 8.589935e+09 1.717987e+10 [36] 3.435974e+10 6.871948e+10 1.374390e+11 2.748779e+11 5.497558e+11 [41] 1.099512e+12 2.199023e+12 4.398047e+12 8.796093e+12 1.759219e+13 [46] 3.518437e+13 7.036874e+13 1.407375e+14 2.814750e+14 5.629500e+14 [51] 1.125900e+15 2.251800e+15 4.503600e+15 9.007199e+15 1.801440e+16 [56] 3.602880e+16 7.205759e+16 1.441152e+17 2.882304e+17 5.764608e+17 [61] 1.152922e+18 2.305843e+18 4.611686e+18 9.223372e+18 1.844674e+19 [66] 3.689349e+19 7.378698e+19 1.475740e+20 2.951479e+20 5.902958e+20 [71] 1.180592e+21 2.361183e+21 4.722366e+21 9.444733e+21 1.888947e+22 [76] 3.777893e+22 7.555786e+22 1.511157e+23 3.022315e+23 6.044629e+23 [81] 1.208926e+24 2.417852e+24 4.835703e+24 9.671407e+24 1.934281e+25 [86] 3.868563e+25 7.737125e+25 1.547425e+26 3.094850e+26 6.189700e+26 [91] 1.237940e+27 2.475880e+27 4.951760e+27 9.903520e+27 1.980704e+28 [96] 3.961408e+28 7.922816e+28 1.584563e+29 3.169127e+29 6.338253e+29 [101] 1.267651e+30 2^seq(0,100,by=2) [1] 1.000000e+00 4.000000e+00 1.600000e+01 6.400000e+01 2.560000e+02 [6] 1.024000e+03 4.096000e+03 1.638400e+04 6.553600e+04 2.621440e+05 [11] 1.048576e+06 4.194304e+06 1.677722e+07 6.710886e+07 2.684355e+08 [16] 1.073742e+09 4.294967e+09 1.717987e+10 6.871948e+10 2.748779e+11 [21] 1.099512e+12 4.398047e+12 1.759219e+13 7.036874e+13 2.814750e+14 [26] 1.125900e+15 4.503600e+15 1.801440e+16 7.205759e+16 2.882304e+17 [31] 1.152922e+18 4.611686e+18 1.844674e+19 7.378698e+19 2.951479e+20 [36] 1.180592e+21 4.722366e+21 1.888947e+22 7.555786e+22 3.022315e+23 [41] 1.208926e+24 4.835703e+24 1.934281e+25 7.737125e+25 3.094850e+26 [46] 1.237940e+27 4.951760e+27 1.980704e+28 7.922816e+28 3.169127e+29 [51] 1.267651e+30 2^seq(0,100,by=4) [1] 1.000000e+00 1.600000e+01 2.560000e+02 4.096000e+03 6.553600e+04 [6] 1.048576e+06 1.677722e+07 2.684355e+08 4.294967e+09 6.871948e+10 [11] 1.099512e+12 1.759219e+13 2.814750e+14 4.503600e+15 7.205759e+16 [16] 1.152922e+18 1.844674e+19 2.951479e+20 4.722366e+21 7.555786e+22 [21] 1.208926e+24 1.934281e+25 3.094850e+26 4.951760e+27 7.922816e+28 [26] 1.267651e+30 2^seq(0,100,by=5) [1] 1.000000e+00 3.200000e+01 1.024000e+03 3.276800e+04 1.048576e+06 [6] 3.355443e+07 1.073742e+09 3.435974e+10 1.099512e+12 3.518437e+13 [11] 1.125900e+15 3.602880e+16 1.152922e+18 3.689349e+19 1.180592e+21 [16] 3.777893e+22 1.208926e+24 3.868563e+25 1.237940e+27 3.961408e+28 [21] 1.267651e+30