双向搜索?
一个双向搜索是运行两个方式搜索技术。它与两个同时运行的搜索一起工作,第一个从源太目标搜索,另一个从目标到源反向搜索。在最佳状态下,两个搜索都将在数据结构的中间相遇。
双向搜索算法在有向图上工作,以查找源(初始节点)到目标节点之间的最短路径。这两个搜索将从它们各自的位置开始,并且当两个搜索在一个节点相遇时,算法将停止。
双向方法的重要性-这是一种更快的技术,它可以缩短遍历图形所需的时间。
在起始节点和目标节点是唯一且已定义的情况下,此方法非常有效。两个方向的分支因子相同。
绩效指标
完整性 -如果两个搜索都使用BFS,则双向搜索完成。
最优性 -如果将BFS用于搜索并且路径成本统一,则是最优的。
时空复杂度 -时空复杂度为O(b^{d/2})
示例
#include <bits/stdc++.h>
using namespace std;
class Graph {
int V;
list<int> *adj;
public:
Graph(int V);
int isIntersecting(bool *s_visited, bool *t_visited);
void addEdge(int u, int v);
void printPath(int *s_parent, int *t_parent, int s,
int t, int intersectNode);
void BFS(list<int> *queue, bool *visited, int *parent);
int biDirSearch(int s, int t);
};
Graph::Graph(int V) {
this->V = V;
adj = new list<int>[V];
};
void Graph::addEdge(int u, int v) {
this->adj[u].push_back(v);
this->adj[v].push_back(u);
};
void Graph::BFS(list<int> *queue, bool *visited,
int *parent) {
int current = queue->front();
queue->pop_front();
list<int>::iterator i;
for (i=adj[current].begin();i != adj[current].end();i++) {
if (!visited[*i]) {
parent[*i] = current;
visited[*i] = true;
queue->push_back(*i);
}
}
};
int Graph::isIntersecting(bool *s_visited, bool *t_visited) {
int intersectNode = -1;
for(int i=0;i<V;i++) {
if(s_visited[i] && t_visited[i])
return i;
}
return -1;
};
void Graph::printPath(int *s_parent, int *t_parent,
int s, int t, int intersectNode) {
vector<int> path;
path.push_back(intersectNode);
int i = intersectNode;
while (i != s) {
path.push_back(s_parent[i]);
i = s_parent[i];
}
reverse(path.begin(), path.end());
i = intersectNode;
while(i != t) {
path.push_back(t_parent[i]);
i = t_parent[i];
}
vector<int>::iterator it;
cout<<"Path Traversed by the algorithm\n";
for(it = path.begin();it != path.end();it++)
cout<<*it<<" ";
cout<<"\n";
};
int Graph::biDirSearch(int s, int t) {
bool s_visited[V], t_visited[V];
int s_parent[V], t_parent[V];
list<int> s_queue, t_queue;
int intersectNode = -1;
for(int i=0; i<V; i++) {
s_visited[i] = false;
t_visited[i] = false;
}
s_queue.push_back(s);
s_visited[s] = true;
s_parent[s]=-1;
t_queue.push_back(t);
t_visited[t] = true;
t_parent[t] = -1;
while (!s_queue.empty() && !t_queue.empty()) {
BFS(&s_queue, s_visited, s_parent);
BFS(&t_queue, t_visited, t_parent);
intersectNode = isIntersecting(s_visited, t_visited);
if(intersectNode != -1) {
cout << "Path exist between " << s << " and "
<< t << "\n";
cout << "Intersection at: " << intersectNode << "\n";
printPath(s_parent, t_parent, s, t, intersectNode);
exit(0);
}
}
return -1;
}
int main() {
int n=15;
int s=0;
int t=14;
Graph g(n);
g.addEdge(0, 4);
g.addEdge(1, 4);
g.addEdge(2, 5);
g.addEdge(3, 5);
g.addEdge(4, 6);
g.addEdge(5, 6);
g.addEdge(6, 7);
g.addEdge(7, 8);
g.addEdge(8, 9);
g.addEdge(8, 10);
g.addEdge(9, 11);
g.addEdge(9, 12);
g.addEdge(10, 13);
g.addEdge(10, 14);
if (g.biDirSearch(s, t) == -1)
cout << "Path don't exist between "
<< s << " and " << t << "\n";
return 0;
}输出结果
Path Traversed by the algorithm 0 4 6 7 8 10 14