C ++中的出队和优先级队列
众所周知,队列数据结构是先进先出数据结构。队列也有一些变化。这些是出队和优先级队列。
出队基本上是双端队列。因此,有两个前对和两个后对。一对前后指针用于从左侧描述队列,另一对用于从右侧描述队列。我们可以从此结构的两侧插入或删除元素。在这里,我们将看到一些使用出队STL理解其功能的C++代码。
示例(出队)
#include <iostream> #include <deque> using namespace std; void dequeElements(deque <int> que) { deque <int> :: iterator it; for (it = que.begin(); it != que.end(); ++it) cout << *it << " "; cout <<endl; } int main() { deque <int> que; que.push_back(10); que.push_front(20); que.push_back(30); que.push_front(15); cout << "Currently que is holding : "; dequeElements(que); cout <<"Size of dequeue : " <<que.size() << endl; cout << "Element at position 2 : " << que.at(2) << endl; cout << "Element at front position : " << que.front() << endl; cout << "Element at back position : " << que.back() << endl; cout << "Delete from front side : "; que.pop_front(); dequeElements(que); cout << "Delete from back side : "; que.pop_back(); dequeElements(que); }
输出结果
Currently que is holding : 15 20 10 30 Size of dequeue : 4 Element at position 2 : 10 Element at front position : 15 Element at back position : 30 Delete from front side : 20 10 30 Delete from back side : 20 10
队列的另一个变体是优先级队列。在这种结构中,队列中的每个元素都有其自己的优先级。当我们将项目插入队列时,我们必须为其分配优先级值。它将首先删除优先级最高的元素。要实现优先级队列,最简单的方法之一是使用堆数据结构。
让我们看一下优先队列STL的一个C++代码。在此,根据值分配优先级。因此,较高的值将被视为最高优先级元素。
示例(优先级队列)
#include <iostream> #include <queue> using namespace std; void dequeElements(priority_queue <int> que) { priority_queue <int> q = que; while(!q.empty()){ cout << q.top() << " "; q.pop(); } cout << endl; } int main() { priority_queue <int> que; que.push(10); que.push(20); que.push(30); que.push(5); que.push(1); cout << "Currently que is holding : "; dequeElements(que); cout << "Size of queue : " <<que.size() << endl; cout << "Element at top position : " << que.top() << endl; cout << "Delete from queue : "; que.pop(); dequeElements(que); cout << "Delete from queue : "; que.pop(); dequeElements(que); }
输出结果
Currently que is holding : 30 20 10 5 1 Size of queue : 5 Element at top position : 30 Delete from queue : 20 10 5 1 Delete from queue : 10 5 1