程序在python中查找带有1的平方子矩阵数
假设我们有一个二维二进制矩阵,我们必须找到所有1都存在的正方形子矩阵的总数。
所以,如果输入像
那么输出将为17,因为有12(1x1)平方,4(2x2)平方和1(3x3)平方。
为了解决这个问题,我们将遵循以下步骤-
res:=0
对于范围在0到矩阵行数的i,执行
如果i等于0或j等于0,则
否则,当matrix[i,j]与1相同时,
res:=res+矩阵[i,j]
矩阵[i,j]=(矩阵[i,j-1],矩阵[i-1,j]和矩阵[i-1,j-1])的最小值+1
res:=res+矩阵[i,j]
对于范围从0到矩阵的列数的j,执行
返回资源
让我们看下面的实现以更好地理解-
例
class Solution:
def solve(self, matrix):
res = 0
for i in range(len(matrix)):
for j in range(len(matrix[0])):
if i == 0 or j == 0:
res += matrix[i][j]
elif matrix[i][j] == 1:
matrix[i][j] = min(matrix[i][j - 1], matrix[i - 1][j], matrix[i - 1][j - 1]) + 1
res += matrix[i][j]
return res
ob = Solution()matrix = [
[1, 1, 1, 0],
[1, 1, 1, 0],
[1, 1, 1, 0],
[0, 0, 0, 0],
[1, 0, 1, 1]
]
print(ob.solve(matrix))输入值
matrix = [ [1, 1, 1, 0], [1, 1, 1, 0], [1, 1, 1, 0], [0, 0, 0, 0], [1, 0, 1, 1] ]
输出结果
17