C语言实现排序算法之归并排序详解
排序算法中的归并排序(MergeSort)是利用"归并"技术来进行排序。归并是指将若干个已排序的子文件合并成一个有序的文件。
一、实现原理:
1、算法基本思路
设两个有序的子文件(相当于输入堆)放在同一向量中相邻的位置上:R[low..m],R[m+1..high],先将它们合并到一个局部的暂存向量R1(相当于输出堆)中,待合并完成后将R1复制回R[low..high]中。
(1)合并过程
合并过程中,设置i,j和p三个指针,其初值分别指向这三个记录区的起始位置。合并时依次比较R[i]和R[j]的关键字,取关键字较小的记录复制到R1[p]中,然后将被复制记录的指针i或j加1,以及指向复制位置的指针p加1。
重复这一过程直至两个输入的子文件有一个已全部复制完毕(不妨称其为空),此时将另一非空的子文件中剩余记录依次复制到R1中即可。
最后,将结果赋值的R[]中。
(2)动态申请R1
实现时,R1是动态申请的,因为申请的空间可能很大,故须加入申请空间是否成功的处理。
二、3种方法实现:
算法1:归并函数都动态分配一个数组,两个有序数组合并成一个有序数组
//合并将两个有序序列([low,mid],[mid+1,high])合并
voidMerge(intarr[],intlow,intmid,inthigh)
{
inti=low,j=mid+1,p=0;
int*newarr=(int*)malloc((high-low+1)*sizeof(int));//用来暂存排序好的数据
if(!newarr){
printf("mallocerror!\n");
exit(1);
}
while(i<=mid&&j<=high){//以下过程很类似两个有序字符串合并成一个有序字符串
if(arr[i]<arr[j])
newarr[p++]=arr[i++];
else
newarr[p++]=arr[j++];
}
while(i<=mid)
newarr[p++]=arr[i++];
while(j<=high)
newarr[p++]=arr[j++];
for(i=low,p=0;p<(high-low+1);i++,p++)//将结果复制到原数组当中
arr[i]=newarr[p];
free(newarr);
}
算法2:
程序开始处就动态分配一个大数组,避免每次都要创建很多小数组,释放内存的时候,不会立即释放。
有关assert()参见:https://www.nhooo.com/article/39685.htm
/*
*File:mergesort.c
*Time:2014-07-19HJJ
*/
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
staticvoidmerge1(intarray[],inttmp[],intlpos,intrpos,intrend);
staticvoidmsort1(intarray[],inttmp[],intleft,intright);
voidmerge_sort1(intarray[],intn)
{
assert(array!=NULL&&n>1);//条件不满足,退出程序并打印错误语句。
int*tmp=(int*)malloc(sizeof(int)*n);
assert(tmp!=NULL);
inti;
for(i=0;i<n;i++){
tmp[i]=array[i];
}
msort1(array,tmp,0,n-1);
free(tmp);
}
//递归的调用此函数,实现折半划分,只完成划分,不实现排序,最终返回array[]数组有序
staticvoidmsort1(intarray[],inttmp[],intleft,intright)
{
assert(array!=NULL&&tmp!=NULL);
if(left==right)
return;
intcenter=(left+right)/2;
msort1(tmp,array,left,center);
msort1(tmp,array,center+1,right);
merge1(tmp,array,left,center+1,right);
}
//该函数实现,将array[]的左右两半排好序的数组,归并为tmp[],并排序
staticvoidmerge1(intarray[],inttmp[],intlpos,intrpos,intrend)
{
assert(array!=NULL&&tmp!=NULL);
intlend=rpos-1;
inttmp_pos=lpos;
while(lpos<=lend&&rpos<=rend){
if(array[lpos]<=array[rpos])
tmp[tmp_pos++]=array[lpos++];
else
tmp[tmp_pos++]=array[rpos++];
}
while(lpos<=lend)
tmp[tmp_pos++]=array[lpos++];
while(rpos<=rend)
tmp[tmp_pos++]=array[rpos++];
}
intmain(intargc,char*argv[])
{
inta[7]={6,5,4,3,2,1,7};
merge_sort1(a,7);
inti;
for(i=0;i<7;i++){
printf("%3d",a[i]);
}
printf("\n");
return0;
}
算法3:
程序开始处分配一个大的数组,只是每次用array[]将数据给tmp[]排好序后,最后再将tmp[]给array[]赋值,这样就能完成每次调用的时候,入口都一样。
voidmerge_sort1(intarray[],intn)
{
assert(array!=NULL&&n>1);//条件不满足,退出程序并打印错误语句。
int*tmp=(int*)malloc(sizeof(int)*n);
assert(tmp!=NULL);
inti;
for(i=0;i<n;i++){
tmp[i]=array[i];
}
msort1(array,tmp,0,n-1);
free(tmp);
}
//递归的调用此函数,实现折半划分,只完成划分,不实现排序,最终返回array[]数组有序
staticvoidmsort1(intarray[],inttmp[],intleft,intright)
{
assert(array!=NULL&&tmp!=NULL);
if(left==right)
return;
intcenter=(left+right)/2;
msort1(tmp,array,left,center);
msort1(tmp,array,center+1,right);
merge(tmp,array,left,center+1,right);
}
实现方法二:
voidmerge(intarray[],inttmp[],intlpos,intrpos,intrend)
{
inti,leftend,num,tmppos;
leftend=rpos-1;
num=rend-lpos+1;
tmppos=lpos;
while(lpos<=leftend&&rpos<=rend){
if(array[lpos]<=array[rpos])
tmp[tmppos++]=array[lpos++];
else
tmp[tmppos++]=array[rpos++];
}
while(lpos<=leftend)
tmp[tmppos++]=array[lpos++];
while(rpos<=rend)
tmp[tmppos++]=array[rpos++];
for(i=0;i<num;i++,rend--)
array[rend]=tmp[rend];
}
归并排序:将一个无序数组合并成一个有序数组
有两种实现方法:自底向上和自顶向下
1、自底向上的方法(自底向上的归并排序算法虽然效率较高,但可读性较差。)
(1)自底向上的基本思想:
自底向上的基本思想是:第1趟归并排序时,将待排序的文件R[1..n]看作是n个长度为1的有序子文件,将这些子文件两两归并,若n为偶数,则得到n/2个长度为2的有序子文件;若n为奇数,则最后一个子文件轮空(不参与归并)。故本趟归并完成后,前logn个有序子文件长度为2,但最后一个子文件长度仍为1;第2趟归并则是将第1趟归并所得到的logn个有序的子文件两两归并,如此反复,直到最后得到一个长度为n的有序文件为止。
上述的每次归并操作,均是将两个有序的子文件合并成一个有序的子文件,故称其为"二路归并排序"。类似地有k(k>2)路归并排序。
(2)一趟归并算法
分析:
在某趟归并中,设各子文件长度为length(最后一个子文件的长度可能小于length),则归并前R[1..n]中共有个有序的子文件:R[1..length],R[length+1..2length],…
注意:
调用归并操作将相邻的一对子文件进行归并时,必须对子文件的个数可能是奇数、以及最后一个子文件的长度小于length这两种特殊情况进行特殊处理:
①若子文件个数为奇数,则最后一个子文件无须和其它子文件归并(即本趟轮空);
②若子文件个数为偶数,则要注意最后一对子文件中后一子文件的区间上界是n。
具体算法如下:
/*自底向上,这里就不写真正的代码了,从网上copy了*/
voidMergePass(SeqListR,intlength)
{//对R[1..n]做一趟归并排序
inti;
for(i=1;i+2*length-1<=n;i=i+2*length)
Merge(R,i,i+length-1,i+2*length-1);
//归并长度为length的两个相邻子文件
if(i+length-1<n)//尚有两个子文件,其中后一个长度小于length
Merge(R,i,i+length-1,n);//归并最后两个子文件
//注意:若i≤n且i+length-1≥n时,则剩余一个子文件轮空,无须归并
}//MergePass
voidMergeSort(SeqListR)
{//采用自底向上的方法,对R[1..n]进行二路归并排序
intlength;
for(1ength=1;length<n;length*=2)//做趟归并
MergePass(R,length);//有序段长度≥n时终止
}
2、自顶向下的方法
采用分治法进行自顶向下的算法设计,形式更为简洁。
(1)分治法的三个步骤
设归并排序的当前区间是R[low..high],分治法的三个步骤是:
①分解:将当前区间一分为二,即求分裂点:mid=(low+high)/2;
②求解:递归地对两个子区间R[low..mid]和R[mid+1..high]进行归并排序;
③组合:将已排序的两个子区间R[low..mid]和R[mid+1..high]归并为一个有序的区间R[low..high]。
递归的终结条件:子区间长度为1(一个记录自然有序)。
具体算法:
voidMSort(intarr[],intlow,inthigh)
{
if(low<high){
intmid=(low+high)/2;
MSort(arr,low,mid);//左半区排序
MSort(arr,mid+1,high);//右半区排序
Merge(arr,low,mid,high);//左右半区合并
}
}
三:分析
1、稳定性
归并排序是一种稳定的排序。
2、存储结构要求
可用顺序存储结构。也易于在链表上实现。
3、时间复杂度
对长度为n的文件,需进行lgn趟二路归并,每趟归并的时间为O(n),故其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlgn)。
4、空间复杂度
需要一个辅助向量来暂存两有序子文件归并的结果,故其辅助空间复杂度为O(n),显然它不是就地排序。
注意:
若用单链表做存储结构,很容易给出就地的归并排序。