Python的SQLalchemy模块连接与操作MySQL的基础示例
一、SQLalchemy简介
SQLAlchemy是一个开源的SQL工具包,基本Python编程语言的MIT许可证而发布的对象关系映射器。SQLAlchemy提供了“一个熟知的企业级全套持久性模式,使用ORM等独立SQLAlchemy的一个优势在于其允许开发人员首先考虑数据模型,并能决定稍后可视化数据的方式。
二、SQLAlchempy的安装
首先需安装mysql,这里就不再多说了.....
然后,下载SQLAlchemy(http://www.sqlalchemy.org/download.html),这里我们以Windows系统为例,然后打开cmd,在安装包文件目录下,运行
pythonsetup.pyinstall
,通过python下输入
importsqlalchemy
,执行未报错则表示安装成功
三、SQLAlchemy的使用实例
1、完成简单数据表信息查询
#1.导入模块
fromsqlalchemyimport*
fromsqlclchemy.ormimport*
#2.建立数据库引擎
mysql_engine=create_engine("$address",echo,module)
#address数据库://用户名:密码(没有密码则为空)@主机名:端口/数据库名
#echo标识用于设置通过python标准日志模块完成的SQLAlchemy日志系统,当开启日志功能,我们将能看到所有的SQL生成代码
#3.建立连接
connection=mysql_engine.connect()
#4.查询表信息
result=connection.execute("selectnamefromt_name)
forrowinresult:
print"name:",row['name']
#5.关闭连接
connection.close()
2、插入新的数据表
#1.导入模块
fromsqlalchemyimport*
fromsqlclchemy.ormimport*
#2.建立数据库引擎
mysql_engine=create_engine("$address",echo,module)
#address数据库://用户名:密码(没有密码则为空)@主机名:端口/数据库名
#echo标识用于设置通过python标准日志模块完成的SQLAlchemy日志系统,当开启日志功能,我们将能看到所有的SQL生成代码
#3.设置metadata并将其绑定到数据库引擎
metadata=Metadata(mysql_engine)
#4.定义需新建的表
users=Table('users',metadata,Column('user_id',Integer,primary_key=True),
Column('name',String(40)),
Column('age',Integer),
Column('password',String),)
#Table实现方式与SQL语言中的CRETETABLE类似
#5.在数据库中创建表
metadata.create_all(mysql_engine)
#向数据库发出CREATETABLE命令,由此数据库新建名为users的表
#调用时会检查已经存在的表结构,因此可重复调用
#6.创建一个与数据库中的users表匹配的python类
classuser():
def__int__(self,name,fullname,password):
self.name=name
self.fullname=fullname
self.passwd=passwd
#python类的属性需与users表的列名一致
#7.设置映射
fromsqlalchemy.ormimportmapper
mapper(user,users)
#mapper()创建一个新的Mapper对象,与定义的类相关联
#需要注意的是,通过mapper建立映射的数据表必须带有主键,如果没有主键就无法定位某个table的某行row,
#如果无法定位某行row,就无法做Object-relationalmapping这样的映射
#8.创建session
Session=sessionmaker(bind=mysql_egnine)
session=Session()
#由此我们只需对python的user类的操作,后台数据库的具体实现交由session完成
#9.执行
session.commit()
#实现与数据库的交互
#10.查询
usr_info=session.query(user).filter_by(age=12).first()
#返回数据库中年纪12岁的第一条数据
上面结合SQLAlchemy中ORM部分实现一个Mapper对象,将类的实例对应表中的记录,实例的属性对应字段。实现一个DataMapping需要三个元素:TabellaMetadata,user-definedclass,mapper对象,这三个是实现对象对表映射的基本元素,在此基础上,可实现一对多的映射,实现类似多表查询的问题
首先创建两个相关联的表Student,Score,表Score中以主表的id字段为外键
Student=Table('student',engine,
column(‘id',Interger,primary_key=True),
column('name',String,nullable=False),
column('age',Interger)
)
Score=Table('score',engine,
column('id',Integer,primary_key=True),
column('student_id',Integer,ForeignKey(student.id))
column('category',String,nullable=False),
column('score',Integer)
)
两表中,Score表以Student表中id项为外键,一般称Student表为主表,Score表为从表
表创建好后,那同样,在python中需定义两个与表相对应的类
classstudent_type(object): def__init__(self): self.name=None classscore_type(object): def__init__(self): self.category=None
在建立mapping时,我们只需要体现两个表间又相互关联关系,
并不关心表中具体的主键与外键等关系(由SQLAlchemy处理),
当需要体现表student与表score间的关联关系,mapper具体的定义方法如:
mapper(student_type,student,properties={'_scores':relation(score_type,Score)})
通过properties中参数,实现score_type与Score的映射,
由此可以通过访问student中的'_scores'属性来查询Score表中的值
另外,properties是一个字典,可以添加多个属性,SQLAlchemy中有些模块如backref,也可导入
综上,使用关系映射可以方便地从一个对象直接找到相对应的其他的对象