Apache.Commons.Math3里面的数值积分支持类采用的是“逼近法”,即,先对大区间做一次积分,再对小区间做一次积分,若两次积分结果的差值小于某一设定的误差值,则认为积分完成。否则,将区间再次细分,对细分后的区间进行积分,与前一次积分相比较,如此反复迭代,直至最近的两次积分差值足够小。这样的结果,有可能会导致无法收敛。
为了使用org.apache.commons.math3.analysis.integration包中的积分器类,需要先实现UnivariateFunction接口(本文以MyFunction为例),实现其value方法。然后创建指定的积分器对象,本文以SimpsonIntegrator为例,最后调用其integrate(...)方法即可算出MyFunction的积分。
调用integrate(...)方法时需要提供4个参数:
第1个是最大逼近次数,要适当大一些,否则可能会无法收敛;
第2个是MyFunction类的实例;
第3个是积分区间下限;
第4个是积分区间上限。
SimpsonIntegrator在第一次迭代时一定是分别以积分下限和积分上限作为x调用连词MyFunction.value(...)方法,下一次则会将区间分成2份(除上下限x值之外,还有一个中间x值),再下一次则是分成4份……
以下是使用辛普森积分类的例子:
importjava.util.ArrayList;
importjava.util.List;
importorg.apache.commons.math3.analysis.UnivariateFunction;
importorg.apache.commons.math3.analysis.integration.SimpsonIntegrator;
importorg.apache.commons.math3.analysis.integration.UnivariateIntegrator;
interfaceTestCase
{
publicObjectrun(List
上述代码中,注释为1.2.3.的可以正常计算出结果,但注释为4.的就无法收敛。
基于org.apache.commons.math3.analysis.integration.UnivariateIntegrator的积分器的另一个局限性在于必须编写一个继承于UnivariateFunction的函数类,实现其value方法(根据输入的x值计算出y值),这种做法有利于可用解析式表达的情况,不利于对存放于外存的大量数据做积分处理。
总结
以上就是本文关于ApacheCommonsMath3学习之数值积分实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:Java蒙特卡洛算法求圆周率近似值实例详解、apachezookeeper使用方法实例详解等,有什么问题可以随时留言,小编会及时回复大家的。这里推荐几本Java方面的书,供广大编程爱好及工作者进行阅读参考,免费的哦!
Java初级开发工程师面试题汇总.PDF
https://www.nhooo.com/books/576989.html
javaJDK1.9API中文参考文档+原版文档高清完整版CHM
https://www.nhooo.com/books/575482.html
希望大家能够喜欢,希望对本站多多支持!