Python中矩阵库Numpy基本操作详解
NumPy是一个关于矩阵运算的库,熟悉Matlab的都应该清楚,这个库就是让python能够进行矩阵话的操作,而不用去写循环操作。
下面对numpy中的操作进行总结。
numpy包含两种基本的数据类型:数组和矩阵。
数组(Arrays)
>>>fromnumpyimport* >>>a1=array([1,1,1])#定义一个数组 >>>a2=array([2,2,2]) >>>a1+a2#对于元素相加 array([3,3,3]) >>>a1*2#乘一个数 array([2,2,2]) ## >>>a1=array([1,2,3]) >>>a1 array([1,2,3]) >>>a1**3#表示对数组中的每个数做平方 array([1,8,27]) ##取值,注意的是它是以0为开始坐标,不matlab不同 >>>a1[1] 2 ##定义多维数组 >>>a3=array([[1,2,3],[4,5,6]]) >>>a3 array([[1,2,3], [4,5,6]]) >>>a3[0]#取出第一行的数据 array([1,2,3]) >>>a3[0,0]#第一行第一个数据 1 >>>a3[0][0]#也可用这种方式 1 ##数组点乘,相当于matlab点乘操作 >>>a1=array([1,2,3]) >>>a2=array([4,5,6]) >>>a1*a2 array([4,10,18])
Numpy有许多的创建数组的函数:
importnumpyasnp a=np.zeros((2,2))#Createanarrayofallzeros printa#Prints"[[0.0.] #[0.0.]]" b=np.ones((1,2))#Createanarrayofallones printb#Prints"[[1.1.]]" c=np.full((2,2),7)#Createaconstantarray printc#Prints"[[7.7.] #[7.7.]]" d=np.eye(2)#Createa2x2identitymatrix printd#Prints"[[1.0.] #[0.1.]]" e=np.random.random((2,2))#Createanarrayfilledwithrandomvalues printe#Mightprint"[[0.919401670.08143941] #[0.687441340.87236687]]"
数组索引(Arrayindexing)
矩阵
矩阵的操作与Matlab语言有很多的相关性。
#创建矩阵 >>>m=mat([1,2,3]) >>>m matrix([[1,2,3]]) #取值 >>>m[0]#取一行 matrix([[1,2,3]]) >>>m[0,1]#第一行,第2个数据 2 >>>m[0][1]#注意不能像数组那样取值了 Traceback(mostrecentcalllast): File"",line1,in File"/usr/lib64/python2.7/site-packages/numpy/matrixlib/defmatrix.py",line305,in__getitem__ out=N.ndarray.__getitem__(self,index) IndexError:index1isoutofboundsforaxis0withsize1 #将Python的列表转换成NumPy的矩阵 >>>list=[1,2,3] >>>mat(list) matrix([[1,2,3]]) #矩阵相乘 >>>m1=mat([1,2,3])#1行3列 >>>m2=mat([4,5,6]) >>>m1*m2.T#注意左列与右行相等m2.T为转置操作 matrix([[32]]) >>>multiply(m1,m2)#执行点乘操作,要使用函数,特别注意 matrix([[4,10,18]]) #排序 >>>m=mat([[2,5,1],[4,6,2]])#创建2行3列矩阵 >>>m matrix([[2,5,1], [4,6,2]]) >>>m.sort()#对每一行进行排序 >>>m matrix([[1,2,5], [2,4,6]]) >>>m.shape#获得矩阵的行列数 (2,3) >>>m.shape[0]#获得矩阵的行数 2 >>>m.shape[1]#获得矩阵的列数 3 #索引取值 >>>m[1,:]#取得第一行的所有元素 matrix([[2,4,6]]) >>>m[1,0:1]#第一行第0个元素,注意左闭右开 matrix([[2]]) >>>m[1,0:3] matrix([[2,4,6]]) >>>m[1,0:2] matrix([[2,4]])
扩展矩阵函数tile()
例如,要计算[0,0,0]到一个多维矩阵中每个点的距离,则要将[0,0,0]进行扩展。
tile(inX,(i,j));i是扩展个数,j是扩展长度
实例如下:
>>>x=mat([0,0,0]) >>>x matrix([[0,0,0]]) >>>tile(x,(3,1))#即将x扩展3个,j=1,表示其列数不变 matrix([[0,0,0], [0,0,0], [0,0,0]]) >>>tile(x,(2,2))#x扩展2次,j=2,横向扩展 matrix([[0,0,0,0,0,0], [0,0,0,0,0,0]])
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持毛票票。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:czq8825#qq.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。