java编程实现求质数与因式分解代码分享
1、求解质数
1.1说明
首先,我们来了解这样一个概念,那就是什么叫做质数?质数:一个数如果只能被1和它自己整除,这样的数被称为质数,与之对应的,称为和数。基于这样的一个概念,我们可以很快想到一个方法,就是从1开始,不断试探,看从1到它自己,是否有数字能够被他整除。
这样看来,其实求质数很简单,我们有没有更加便捷的方式呢?在这里介绍一个著名的Eratosthenes求质数方法。
1.2解法
首先知道这个问题可以使用回圈来求解,将一个指定的数除以所有小于它的数,若可以整除就不是质数,然而如何减少回圈的检查次数?如何求出小于N的所有质数?
假设要检查的数是N好了,则事实上只要检查至N的开根号就可以了,道理很简单,假设A*B=N,如果A大于N的开根号,则事实上在小于A之前的检查就可以先检查到B这个数可以整除N。不过在程式中使用开根号会精确度的问题,所以可以使用i*i<=N进行检查,且执行更快。
再来假设有一个筛子存放1~N,例如:
23456789101112131415161718192021........N
先将2的倍数筛去:
23579111315171921........N
再将3的倍数筛去:
235711131719........N
再来将5的倍数筛去,再来将7的质数筛去,再来将11的倍数筛去........,如此进行到最后留下的数就都是质数,这就是Eratosthenes筛选方法(EratosthenesSieveMethod)。
检查的次数还可以再减少,事实上,只要检查6n+1与6n+5就可以了,也就是直接跳过2与3的倍数,使得程式中的if的检查动作可以减少。
1.3代码
importjava.util.*; publicclassPrime{ publicstaticint[]findPrimes(finalintmax){ int[]prime=newint[max+1]; ArrayListlist=newArrayList(); for(inti=2;i<=max;i++) prime[i]=1; for(inti=2;i*i<=max;i++){//这边可以改进 if(prime[i]==1){ for(intj=2*i;j<=max;j++){ if(j%i==0) prime[j]=0; } } } for(inti=2;i2、因式分解
2.1说明
如上所示,我们先来了解一下,什么叫做因式分解?将一个数,转换成另外几个数字的乘积,就被称为因式分解。当了解到这样一个概念之后,我们对比上面的求解质数,应该能够明白,其实这里我们是在求解一个和数的因子。
因式分解基本上就是使用小于输入数的数值当作除数,去除以输入数值,如果可以整除就视为因数,要比较快的解法就是求出小于该数的所有质数,并试试看是不是可以整除。
2.2代码
importjava.util.ArrayList; publicclassFactor{ publicstaticint[]factor(intnum){ int[]pNum=Prime.findPrimes(num); ArrayListlist=newArrayList(); for(inti=0;pNum[i]*pNum[i]<=num;){ if(num%pNum[i]==0){ list.add(newInteger(pNum[i])); num/=pNum[i]; } else i++; } list.add(newInteger(num)); int[]f=newint[list.size()]; Object[]objs=list.toArray(); for(inti=0;i3、总结
求解质数与因式分解,是学习程序与算法的基本功,应该熟练掌握,这里的代码只有少量的注释,可能对于初学者来说,略感吃力,但是这是进入程序算法殿堂的第一步。大家可以将这段代码拷贝到自己的机器上,逐步填上注释,让自己对程序流程更加清晰。
以上就是本文关于Java编程实现求质数与因式分解代码分享的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出!