tensorflow训练中出现nan问题的解决
深度学习中对于网络的训练是参数更新的过程,需要注意一种情况就是输入数据未做归一化时,如果前向传播结果已经是[0,0,0,1,0,0,0,0]这种形式,而真实结果是[1,0,0,0,0,0,0,0,0],此时由于得出的结论不惧有概率性,而是错误的估计值,此时反向传播会使得权重和偏置值变的无穷大,导致数据溢出,也就出现了nan的问题。
解决办法:
1、对输入数据进行归一化处理,如将输入的图片数据除以255将其转化成0-1之间的数据;
2、对于层数较多的情况,各层都做batch_nomorlization;
3、对设置Weights权重使用tf.truncated_normal(0,0.01,[3,3,1,64])生成,同时值的均值为0,方差要小一些;
4、激活函数可以使用tanh;
5、减小学习率lr。
实例:
importtensorflowastf
fromtensorflow.examples.tutorials.mnistimportinput_data
mnist=input_data.read_data_sets('data',one_hot=True)
defadd_layer(input_data,in_size,out_size,activation_function=None):
Weights=tf.Variable(tf.random_normal([in_size,out_size]))
Biases=tf.Variable(tf.zeros([1,out_size])+0.1)
Wx_plus_b=tf.add(tf.matmul(input_data,Weights),Biases)
ifactivation_function==None:
outputs=Wx_plus_b
else:
outputs=activation_function(Wx_plus_b)
#returnoutputs#,Weights
return{'outdata':outputs,'w':Weights}
defget_accuracy(t_y):
#globall1
#accu=tf.reduce_mean(tf.cast(tf.equal(tf.argmax(l1['outdata'],1),tf.argmax(t_y,1)),dtype=tf.float32))
globalprediction
accu=tf.reduce_mean(tf.cast(tf.equal(tf.argmax(prediction['outdata'],1),tf.argmax(t_y,1)),dtype=tf.float32))
returnaccu
X=tf.placeholder(tf.float32,[None,784])
Y=tf.placeholder(tf.float32,[None,10])
#l1=add_layer(X,784,10,tf.nn.softmax)
#cross_entropy=tf.reduce_mean(-tf.reduce_sum(Y*tf.log(l1['outdata']),reduction_indices=[1]))
#l1=add_layer(X,784,1024,tf.nn.relu)
l1=add_layer(X,784,1024,None)
prediction=add_layer(l1['outdata'],1024,10,tf.nn.softmax)
cross_entropy=tf.reduce_mean(-tf.reduce_sum(Y*tf.log(prediction['outdata']),reduction_indices=[1]))
optimizer=tf.train.GradientDescentOptimizer(0.000001)
train=optimizer.minimize(cross_entropy)
newW=tf.Variable(tf.random_normal([1024,10]))
newOut=tf.matmul(l1['outdata'],newW)
newSoftMax=tf.nn.softmax(newOut)
init=tf.global_variables_initializer()
withtf.Session()assess:
sess.run(init)
#print(sess.run(l1_Weights))
foriinrange(2):
X_train,y_train=mnist.train.next_batch(1)
X_train=X_train/255#需要进行归一化处理
#print(sess.run(l1['w'],feed_dict={X:X_train}))
#print(sess.run(prediction['w'],feed_dict={X:X_train,Y:y_train}))
#print(sess.run(l1['outdata'],feed_dict={X:X_train,Y:y_train}).shape)
print(sess.run(prediction['outdata'],feed_dict={X:X_train,Y:y_train}))
print(sess.run(newOut,feed_dict={X:X_train}))
print(sess.run(newSoftMax,feed_dict={X:X_train}))
print(y_train)
#print(sess.run(l1['outdata'],feed_dict={X:X_train}))
sess.run(train,feed_dict={X:X_train,Y:y_train})
ifi%100==0:
#print(sess.run(cross_entropy,feed_dict={X:X_train,Y:y_train}))
accuracy=get_accuracy(mnist.test.labels)
print(sess.run(accuracy,feed_dict={X:mnist.test.images}))
#ifi%100==0:
#print(sess.run(prediction,feed_dict={X:X_train}))
#print(sess.run(cross_entropy,feed_dict={X:X_train,Y:y_train}))
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持毛票票。