python使用TensorFlow进行图像处理的方法
一、图片的放大缩小
在使用TensorFlow进行图片的放大缩小时,有三种方式:
1、tf.image.resize_nearest_neighbor():临界点插值
2、tf.image.resize_bilinear():双线性插值
3、tf.image.resize_bicubic():双立方插值算法
下面是示例代码:
#encoding:utf-8
#使用TensorFlow进行图片的放缩
importtensorflowastf
importcv2
importnumpyasnp
#读取图片
img=cv2.imread("1.jpg")
#显示原始图片
cv2.imshow("resource",img)
h,w,depth=img.shape
img=np.expand_dims(img,0)
#临界点插值
nn_image=tf.image.resize_nearest_neighbor(img,size=[h+100,w+100])
nn_image=tf.squeeze(nn_image)
withtf.Session()assess:
#运行'init'op
nn_image=sess.run(nn_image)
nn_image=np.uint8(nn_image)
#双线性插值
bi_image=tf.image.resize_bilinear(img,size=[h+100,w+100])
bi_image=tf.squeeze(bi_image)
withtf.Session()assess:
#运行'init'op
bi_image=sess.run(bi_image)
bi_image=np.uint8(bi_image)
#双立方插值算法
bic_image=tf.image.resize_bicubic(img,size=[h+100,w+100])
bic_image=tf.squeeze(bic_image)
withtf.Session()assess:
#运行'init'op
bic_image=sess.run(bic_image)
bic_image=np.uint8(bic_image)
#显示结果图片
cv2.imshow("result_nn",nn_image)
cv2.imshow("result_bi",bi_image)
cv2.imshow("result_bic",bic_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
二、图片的亮度调整
在使用TensorFlow进行图片的亮度调整时,有两种方式:
1、tf.image.adjust_brightness():亮度的全局调整
2、tf.image.random_brightness():亮度的随机调整
下面是示例代码:
#encoding:utf-8
#使用TensorFlow调整图片的亮度
importtensorflowastf
importcv2
importnumpyasnp
#读取图片
img=cv2.imread("1.jpg")
#显示原始图片
cv2.imshow("resource",img)
img=np.expand_dims(img,0)
#adjust_brightness
bright_img=tf.image.adjust_brightness(img,delta=.5)
bright_img=tf.squeeze(bright_img)
withtf.Session()assess:
#运行'init'op
result=sess.run(bright_img)
result=np.uint8(result)
rand_image=tf.image.random_brightness(img,max_delta=.5)
rand_image=tf.squeeze(rand_image)
withtf.Session()assess:
#运行'init'op
result2=sess.run(rand_image)
result2=np.uint8(result2)
cv2.imshow("result",result)
cv2.imshow("result2",result2)
cv2.waitKey(0)
cv2.destroyAllWindows()
三、图片的对比度调整
在使用TensorFlow进行图片的对比度调整时,有两种方式:
1、tf.image.adjust_contrast():对比度的全局调整
2、tf.image.random_contrast():对比度的随机调整
代码与图片的亮度调整类似,这里就不赘述了。
四、图片的饱和度调整
在使用TensorFlow进行图片的饱和度调整时,使用下列函数:
tf.image.adjust_saturation()
饱和度调整范围为0~5
下面示例代码:
#encoding:utf-8
#使用TensorFlow调整图片的亮度
importtensorflowastf
importcv2
importnumpyasnp
#读取图片
img=cv2.imread("1.jpg")
#显示原始图片
cv2.imshow("resource",img)
#图像的饱和度调整
stand_img=tf.image.adjust_saturation(img,saturation_factor=2.4)
withtf.Session()assess:
#运行'init'op
result=sess.run(stand_img)
result=np.uint8(result)
cv2.imshow("result",result)
cv2.waitKey(0)
cv2.destroyAllWindows()
五、图片的标准化
在使用TensorFlow对图像数据进行训练之前,常需要执行图像的标准化操作,它与归一化是有区别的,归一化不改变图像的直方图,标准化操作会改变图像的直方图。标准化操作使用如下函数:
tf.image.per_image_standardization()
下面是示例代码:
#encoding:utf-8
#使用TensorFlow调整图片的亮度
importtensorflowastf
importcv2
importnumpyasnp
#读取图片
img=cv2.imread("1.jpg")
#显示原始图片
cv2.imshow("resource",img)
#图像标准化操作
stand_img=tf.image.per_image_standardization(img)
withtf.Session()assess:
#运行'init'op
result=sess.run(stand_img)
result=np.uint8(result)
cv2.imshow("result",result)
cv2.waitKey(0)
cv2.destroyAllWindows()
六、图像的色彩空间转化
使用TensorFlow进行图像的色彩空间转化,包括HSV、RGB、灰度色彩空间之间的转化,使用的函数如下所示:
tf.image.rgb_to_hsv() tf.image.rgb_to_grayscale() tf.image.hsv_to_rgb()
代码与图像的标准化操作的代码相似,这里不再赘述。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持毛票票。