pandas数值计算与排序方法
以下代码是基于python3.5.0编写的
importpandas food_info=pandas.read_csv("food_info.csv") #---------------------特定列加减乘除------------------------- print(food_info["Iron_(mg)"]) div_1000=food_info["Iron_(mg)"]/1000 add_100=food_info["Iron_(mg)"]+100 sub_100=food_info["Iron_(mg)"]-100 mult_2=food_info["Iron_(mg)"]*2 #---------------------某两列相乘--------------------------- water_energy=food_info["Water_(g)"]*food_info["Energ_Kcal"] #----------------------把某一列除1000,再添加新列---------------------------- iron_grams=food_info["Iron_(mg)"]/1000 food_info["Iron_(g)"]=iron_grams #-------------------Score=2×(Protein_(g))−0.75×(Lipid_Tot_(g))-------------- weighted_protein=food_info["Protein_(g)"]*2 weighted_fat=-0.75*food_info["Lipid_Tot_(g)"] initial_rating=weighted_protein+weighted_fat #----------------------------数据归一化----------------------------------- max_calories=food_info["Energ_Kcal"].max()#找列最大值 normalized_calories=food_info["Energ_Kcal"]/max_calories normalized_protein=food_info["Protein_(g)"]/food_info["Protein_(g)"].max() normalized_fat=food_info["Lipid_Tot_(g)"]/food_info["Lipid_Tot_(g)"].max() food_info["Normalized_Protein"]=normalized_protein food_info["Normalized_Fat"]=normalized_fat #-------------------------------排序---------------------------------- food_info.sort_values("Sodium_(mg)",inplace=True)#升序,inplace=True表示不从建DataFrame print(food_info["Sodium_(mg)"]) food_info.sort_values("Sodium_(mg)",inplace=True,ascending=False)#降序,ascending=False表示降序 print(food_info["Sodium_(mg)"])
以上这篇pandas数值计算与排序方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持毛票票。