Python实现的朴素贝叶斯算法经典示例【测试可用】
本文实例讲述了Python实现的朴素贝叶斯算法。分享给大家供大家参考,具体如下:
代码主要参考机器学习实战那本书,发现最近老外的书确实比中国人写的好,由浅入深,代码通俗易懂,不多说上代码:
#encoding:utf-8 ''''' Createdon2015年9月6日 @author:ZHOUMEIXU204 朴素贝叶斯实现过程 ''' #在该算法中类标签为1和0,如果是多标签稍微改动代码既可 importnumpyasnp path=u"D:\\Users\\zhoumeixu204\Desktop\\python语言机器学习\\机器学习实战代码python\\机器学习实战代码\\machinelearninginaction\\Ch04\\" defloadDataSet(): postingList=[['my','dog','has','flea','problems','help','please'],\ ['maybe','not','take','him','to','dog','park','stupid'],\ ['my','dalmation','is','so','cute','I','love','him'],\ ['stop','posting','stupid','worthless','garbage'],\ ['mr','licks','ate','my','steak','how','to','stop','him'],\ ['quit','buying','worthless','dog','food','stupid']] classVec=[0,1,0,1,0,1]#1isabusive,0not returnpostingList,classVec defcreateVocabList(dataset): vocabSet=set([]) fordocumentindataset: vocabSet=vocabSet|set(document) returnlist(vocabSet) defsetOfWordseVec(vocabList,inputSet): returnVec=[0]*len(vocabList) forwordininputSet: ifwordinvocabList: returnVec[vocabList.index(word)]=1#vocabList.index()函数获取vocabList列表某个元素的位置,这段代码得到一个只包含0和1的列表 else: print("theword:%sisnotinmyVocabulary!"%word) returnreturnVec listOPosts,listClasses=loadDataSet() myVocabList=createVocabList(listOPosts) print(len(myVocabList)) print(myVocabList) print(setOfWordseVec(myVocabList,listOPosts[0])) print(setOfWordseVec(myVocabList,listOPosts[3])) #上述代码是将文本转化为向量的形式,如果出现则在向量中为1,若不出现,则为0 deftrainNB0(trainMatrix,trainCategory):#创建朴素贝叶斯分类器函数 numTrainDocs=len(trainMatrix) numWords=len(trainMatrix[0]) pAbusive=sum(trainCategory)/float(numTrainDocs) p0Num=np.ones(numWords);p1Num=np.ones(numWords) p0Deom=2.0;p1Deom=2.0 foriinrange(numTrainDocs): iftrainCategory[i]==1: p1Num+=trainMatrix[i] p1Deom+=sum(trainMatrix[i]) else: p0Num+=trainMatrix[i] p0Deom+=sum(trainMatrix[i]) p1vect=np.log(p1Num/p1Deom)#changetolog p0vect=np.log(p0Num/p0Deom)#changetolog returnp0vect,p1vect,pAbusive listOPosts,listClasses=loadDataSet() myVocabList=createVocabList(listOPosts) trainMat=[] forpostinDocinlistOPosts: trainMat.append(setOfWordseVec(myVocabList,postinDoc)) p0V,p1V,pAb=trainNB0(trainMat,listClasses) if__name__!='__main__': print("p0的概况") print(p0V) print("p1的概率") print(p1V) print("pAb的概率") print(pAb)
运行结果:
32
['him','garbage','problems','take','steak','quit','so','is','cute','posting','dog','to','love','licks','dalmation','flea','I','please','maybe','buying','my','stupid','park','food','stop','has','ate','help','how','mr','worthless','not']
[0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,1,0,0,0,0]
[0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0]
#-*-coding:utf-8-*- #!python2 #构建样本分类器testEntry=['love','my','dalmation']testEntry=['stupid','garbage']到底属于哪个类别 importnumpyasnp defloadDataSet(): postingList=[['my','dog','has','flea','problems','help','please'],\ ['maybe','not','take','him','to','dog','park','stupid'],\ ['my','dalmation','is','so','cute','I','love','him'],\ ['stop','posting','stupid','worthless','garbage'],\ ['mr','licks','ate','my','steak','how','to','stop','him'],\ ['quit','buying','worthless','dog','food','stupid']] classVec=[0,1,0,1,0,1]#1isabusive,0not returnpostingList,classVec defcreateVocabList(dataset): vocabSet=set([]) fordocumentindataset: vocabSet=vocabSet|set(document) returnlist(vocabSet) defsetOfWordseVec(vocabList,inputSet): returnVec=[0]*len(vocabList) forwordininputSet: ifwordinvocabList: returnVec[vocabList.index(word)]=1#vocabList.index()函数获取vocabList列表某个元素的位置,这段代码得到一个只包含0和1的列表 else: print("theword:%sisnotinmyVocabulary!"%word) returnreturnVec deftrainNB0(trainMatrix,trainCategory):#创建朴素贝叶斯分类器函数 numTrainDocs=len(trainMatrix) numWords=len(trainMatrix[0]) pAbusive=sum(trainCategory)/float(numTrainDocs) p0Num=np.ones(numWords);p1Num=np.ones(numWords) p0Deom=2.0;p1Deom=2.0 foriinrange(numTrainDocs): iftrainCategory[i]==1: p1Num+=trainMatrix[i] p1Deom+=sum(trainMatrix[i]) else: p0Num+=trainMatrix[i] p0Deom+=sum(trainMatrix[i]) p1vect=np.log(p1Num/p1Deom)#changetolog p0vect=np.log(p0Num/p0Deom)#changetolog returnp0vect,p1vect,pAbusive defclassifyNB(vec2Classify,p0Vec,p1Vec,pClass1): p1=sum(vec2Classify*p1Vec)+np.log(pClass1) p0=sum(vec2Classify*p0Vec)+np.log(1.0-pClass1) ifp1>p0: return1 else: return0 deftestingNB(): listOPosts,listClasses=loadDataSet() myVocabList=createVocabList(listOPosts) trainMat=[] forpostinDocinlistOPosts: trainMat.append(setOfWordseVec(myVocabList,postinDoc)) p0V,p1V,pAb=trainNB0(np.array(trainMat),np.array(listClasses)) print("p0V={0}".format(p0V)) print("p1V={0}".format(p1V)) print("pAb={0}".format(pAb)) testEntry=['love','my','dalmation'] thisDoc=np.array(setOfWordseVec(myVocabList,testEntry)) print(thisDoc) print("vec2Classify*p0Vec={0}".format(thisDoc*p0V)) print(testEntry,'classifiedas:',classifyNB(thisDoc,p0V,p1V,pAb)) testEntry=['stupid','garbage'] thisDoc=np.array(setOfWordseVec(myVocabList,testEntry)) print(thisDoc) print(testEntry,'classifiedas:',classifyNB(thisDoc,p0V,p1V,pAb)) if__name__=='__main__': testingNB()
运行结果:
p0V=[-3.25809654-2.56494936-3.25809654-3.25809654-2.56494936-2.56494936
-3.25809654-2.56494936-2.56494936-3.25809654-2.56494936-2.56494936
-2.56494936-2.56494936-1.87180218-2.56494936-2.56494936-2.56494936
-2.56494936-2.56494936-2.56494936-3.25809654-3.25809654-2.56494936
-2.56494936-3.25809654-2.15948425-2.56494936-3.25809654-2.56494936
-3.25809654-3.25809654]
p1V=[-2.35137526-3.04452244-1.94591015-2.35137526-1.94591015-3.04452244
-2.35137526-3.04452244-3.04452244-1.65822808-3.04452244-3.04452244
-2.35137526-3.04452244-3.04452244-3.04452244-3.04452244-3.04452244
-3.04452244-3.04452244-3.04452244-2.35137526-2.35137526-3.04452244
-3.04452244-2.35137526-2.35137526-3.04452244-2.35137526-2.35137526
-2.35137526-2.35137526]
pAb=0.5
[00000000000000100100000000010000]
vec2Classify*p0Vec=[-0. -0. -0. -0. -0. -0. -0.
-0. -0. -0. -0. -0. -0. -0.
-1.87180218-0. -0. -2.56494936-0. -0. -0.
-0. -0. -0. -0. -0. -0.
-2.56494936-0. -0. -0. -0. ]
['love','my','dalmation']classifiedas:0
[00000000010000000000000000000001]
['stupid','garbage']classifiedas:1
#-*-coding:utf-8-*- #!python2 #使用朴素贝叶斯过滤垃圾邮件 #1.收集数据:提供文本文件 #2.准备数据:讲文本文件见习成词条向量 #3.分析数据:检查词条确保解析的正确性 #4.训练算法:使用我们之前简历的trainNB0()函数 #5.测试算法:使用classifyNB(),并且对建一个新的测试函数来计算文档集的错误率 #6.使用算法,构建一个完整的程序对一组文档进行分类,将错分的文档输出到屏幕上 #importre #mySent='thisbookisthebestbookonpythonorM.L.Ihvaeeverlaideyesupon.' #print(mySent.split()) #regEx=re.compile('\\W*') #print(regEx.split(mySent)) #emailText=open(path+"email\\ham\\6.txt").read() importnumpyasnp path=u"C:\\py\\jb51PyDemo\\src\\Demo\\Ch04\\" defloadDataSet(): postingList=[['my','dog','has','flea','problems','help','please'],\ ['maybe','not','take','him','to','dog','park','stupid'],\ ['my','dalmation','is','so','cute','I','love','him'],\ ['stop','posting','stupid','worthless','garbage'],\ ['mr','licks','ate','my','steak','how','to','stop','him'],\ ['quit','buying','worthless','dog','food','stupid']] classVec=[0,1,0,1,0,1]#1isabusive,0not returnpostingList,classVec defcreateVocabList(dataset): vocabSet=set([]) fordocumentindataset: vocabSet=vocabSet|set(document) returnlist(vocabSet) defsetOfWordseVec(vocabList,inputSet): returnVec=[0]*len(vocabList) forwordininputSet: ifwordinvocabList: returnVec[vocabList.index(word)]=1#vocabList.index()函数获取vocabList列表某个元素的位置,这段代码得到一个只包含0和1的列表 else: print("theword:%sisnotinmyVocabulary!"%word) returnreturnVec deftrainNB0(trainMatrix,trainCategory):#创建朴素贝叶斯分类器函数 numTrainDocs=len(trainMatrix) numWords=len(trainMatrix[0]) pAbusive=sum(trainCategory)/float(numTrainDocs) p0Num=np.ones(numWords);p1Num=np.ones(numWords) p0Deom=2.0;p1Deom=2.0 foriinrange(numTrainDocs): iftrainCategory[i]==1: p1Num+=trainMatrix[i] p1Deom+=sum(trainMatrix[i]) else: p0Num+=trainMatrix[i] p0Deom+=sum(trainMatrix[i]) p1vect=np.log(p1Num/p1Deom)#changetolog p0vect=np.log(p0Num/p0Deom)#changetolog returnp0vect,p1vect,pAbusive defclassifyNB(vec2Classify,p0Vec,p1Vec,pClass1): p1=sum(vec2Classify*p1Vec)+np.log(pClass1) p0=sum(vec2Classify*p0Vec)+np.log(1.0-pClass1) ifp1>p0: return1 else: return0 deftextParse(bigString): importre listOfTokens=re.split(r'\W*',bigString) return[tok.lower()fortokinlistOfTokensiflen(tok)>2] defspamTest(): docList=[];classList=[];fullText=[] foriinrange(1,26): wordList=textParse(open(path+"email\\spam\\%d.txt"%i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(1) wordList=textParse(open(path+"email\\ham\\%d.txt"%i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(0) vocabList=createVocabList(docList) trainingSet=range(50);testSet=[] foriinrange(10): randIndex=int(np.random.uniform(0,len(trainingSet))) testSet.append(trainingSet[randIndex]) del(trainingSet[randIndex]) trainMat=[];trainClasses=[] fordocIndexintrainingSet: trainMat.append(setOfWordseVec(vocabList,docList[docIndex])) trainClasses.append(classList[docIndex]) p0V,p1V,pSpam=trainNB0(np.array(trainMat),np.array(trainClasses)) errorCount=0 fordocIndexintestSet: wordVector=setOfWordseVec(vocabList,docList[docIndex]) ifclassifyNB(np.array(wordVector),p0V,p1V,pSpam)!=classList[docIndex]: errorCount+=1 print'theerrorrateis:',float(errorCount)/len(testSet) if__name__=='__main__': spamTest()
运行结果:
theerrorrateis:0.0
其中,path路径所使用到的Ch04文件点击此处本站下载。
注:本文算法源自《机器学习实战》一书。
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。