kaggle+mnist实现手写字体识别
现在的许多手写字体识别代码都是基于已有的mnist手写字体数据集进行的,而kaggle需要用到网站上给出的数据集并生成测试集的输出用于提交。这里选择keras搭建卷积网络进行识别,可以直接生成测试集的结果,最终结果识别率大概97%左右的样子。
#-*-coding:utf-8-*- """ CreatedonTueJun619:07:102017 @author:Administrator """ fromkeras.modelsimportSequential fromkeras.layersimportDense,Dropout,Activation,Flatten fromkeras.layersimportConvolution2D,MaxPooling2D fromkeras.utilsimportnp_utils importos importpandasaspd importnumpyasnp fromtensorflow.examples.tutorials.mnistimportinput_data fromkerasimportbackendasK importtensorflowastf #全局变量 batch_size=100 nb_classes=10 epochs=20 #inputimagedimensions img_rows,img_cols=28,28 #numberofconvolutionalfilterstouse nb_filters=32 #sizeofpoolingareaformaxpooling pool_size=(2,2) #convolutionkernelsize kernel_size=(3,3) inputfile='F:/data/kaggle/mnist/train.csv' inputfile2='F:/data/kaggle/mnist/test.csv' outputfile='F:/data/kaggle/mnist/test_label.csv' pwd=os.getcwd() os.chdir(os.path.dirname(inputfile)) train=pd.read_csv(os.path.basename(inputfile))#从训练数据文件读取数据 os.chdir(pwd) pwd=os.getcwd() os.chdir(os.path.dirname(inputfile)) test=pd.read_csv(os.path.basename(inputfile2))#从测试数据文件读取数据 os.chdir(pwd) x_train=train.iloc[:,1:785]#得到特征数据 y_train=train['label'] y_train=np_utils.to_categorical(y_train,10) mnist=input_data.read_data_sets("MNIST_data/",one_hot=True)#导入数据 x_test=mnist.test.images y_test=mnist.test.labels #根据不同的backend定下不同的格式 ifK.image_dim_ordering()=='th': x_train=np.array(x_train) test=np.array(test) x_train=x_train.reshape(x_train.shape[0],1,img_rows,img_cols) x_test=x_test.reshape(x_test.shape[0],1,img_rows,img_cols) input_shape=(1,img_rows,img_cols) test=test.reshape(test.shape[0],1,img_rows,img_cols) else: x_train=np.array(x_train) test=np.array(test) x_train=x_train.reshape(x_train.shape[0],img_rows,img_cols,1) X_test=x_test.reshape(x_test.shape[0],img_rows,img_cols,1) test=test.reshape(test.shape[0],img_rows,img_cols,1) input_shape=(img_rows,img_cols,1) x_train=x_train.astype('float32') x_test=X_test.astype('float32') test=test.astype('float32') x_train/=255 X_test/=255 test/=255 print('X_trainshape:',x_train.shape) print(x_train.shape[0],'trainsamples') print(x_test.shape[0],'testsamples') print(test.shape[0],'testOuputsamples') model=Sequential()#modelinitial model.add(Convolution2D(nb_filters,(kernel_size[0],kernel_size[1]), padding='same', input_shape=input_shape))#卷积层1 model.add(Activation('relu'))#激活层 model.add(Convolution2D(nb_filters,(kernel_size[0],kernel_size[1])))#卷积层2 model.add(Activation('relu'))#激活层 model.add(MaxPooling2D(pool_size=pool_size))#池化层 model.add(Dropout(0.25))#神经元随机失活 model.add(Flatten())#拉成一维数据 model.add(Dense(128))#全连接层1 model.add(Activation('relu'))#激活层 model.add(Dropout(0.5))#随机失活 model.add(Dense(nb_classes))#全连接层2 model.add(Activation('softmax'))#Softmax评分 #编译模型 model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) #训练模型 model.fit(x_train,y_train,batch_size=batch_size,epochs=epochs,verbose=1) model.predict(x_test) #评估模型 score=model.evaluate(x_test,y_test,verbose=0) print('Testscore:',score[0]) print('Testaccuracy:',score[1]) y_test=model.predict(test) sess=tf.InteractiveSession() y_test=sess.run(tf.arg_max(y_test,1)) y_test=pd.DataFrame(y_test) y_test.to_csv(outputfile)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持毛票票。