MySQL锁(表锁,行锁,共享锁,排它锁,间隙锁)使用详解
锁,在现实生活中是为我们想要隐藏于外界所使用的一种工具。在计算机中,是协调多个进程或县城并发访问某一资源的一种机制。在数据库当中,除了传统的计算资源(CPU、RAM、I/O等等)的争用之外,数据也是一种供许多用户共享访问的资源。如何保证数据并发访问的一致性、有效性,是所有数据库必须解决的一个问题,锁的冲突也是影响数据库并发访问性能的一个重要因素。从这一角度来说,锁对于数据库而言就显得尤为重要。
MySQL锁
相对于其他的数据库而言,MySQL的锁机制比较简单,最显著的特点就是不同的存储引擎支持不同的锁机制。根据不同的存储引擎,MySQL中锁的特性可以大致归纳如下:
行锁 | 表锁 | 页锁 | |
MyISAM | √ |
||
BDB | √ |
√ |
|
InnoDB | √ |
√ |
开销、加锁速度、死锁、粒度、并发性能
表锁:开销小,加锁快;不会出现死锁;锁定力度大,发生锁冲突概率高,并发度最低
行锁:开销大,加锁慢;会出现死锁;锁定粒度小,发生锁冲突的概率低,并发度高
页锁:开销和加锁速度介于表锁和行锁之间;会出现死锁;锁定粒度介于表锁和行锁之间,并发度一般
从上述的特点课件,很难笼统的说哪种锁最好,只能根据具体应用的特点来说哪种锁更加合适。仅仅从锁的角度来说的话:
表锁更适用于以查询为主,只有少量按索引条件更新数据的应用;行锁更适用于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用。(PS:由于BDB已经被InnoDB所取代,我们只讨论MyISAM表锁和InnoDB行锁的问题)
MyISAM表锁
MyISAM存储引擎只支持表锁,这也是MySQL开始几个版本中唯一支持的锁类型。随着应用对事务完整性和并发性要求的不断提高,MySQL才开始开发基于事务的存储引擎,后来慢慢出现了支持页锁的BDB存储引擎和支持行锁的InnoDB存储引擎(实际InnoDB是单独的一个公司,现在已经被Oracle公司收购)。但是MyISAM的表锁依然是使用最为广泛的锁类型。本节将详细介绍MyISAM表锁的使用。
查询表级锁争用情况
可以通过检查table_locks_waited和table_locks_immediate状态变量来分析系统上的表锁定争夺:
mysql>showstatuslike'table%'; +-----------------------+-------+ |Variable_name|Value| +-----------------------+-------+ |Table_locks_immediate|2979| |Table_locks_waited|0| +-----------------------+-------+ 2rowsinset(0.00sec))
如果Table_locks_waited的值比较高,则说明存在着较严重的表级锁争用情况。
MySQL表级锁的锁模式
MySQL的表级锁有两种模式:表共享读锁(TableReadLock)和表独占写锁(TableWriteLock)。锁模式的兼容性如下表所示。
MySQL中的表锁兼容性
请求锁模式 是否兼容 当前锁模式 |
None | 读锁 | 写锁 |
读锁 | 是 | 是 | 否 |
写锁 | 是 | 否 | 否 |
可见,对MyISAM表的读操作,不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求;对MyISAM表的写操作,则会阻塞其他用户对同一表的读和写操作;MyISAM表的读操作与写操作之间,以及写操作之间是串行的!根据如下表所示的例子可以知道,当一个线程获得对一个表的写锁后,只有持有锁的线程可以对表进行更新操作。其他线程的读、写操作都会等待,直到锁被释放为止。
MyISAM存储引擎的写阻塞读例子
session_1 | session_2 |
获得表film_text的WRITE锁定 mysql>locktablefilm_textwrite;QueryOK,0rowsaffected(0.00sec) |
|
当前session对锁定表的查询、更新、插入操作都可以执行: mysql>selectfilm_id,titlefromfilm_textwherefilm_id=1001; |
其他session对锁定表的查询被阻塞,需要等待锁被释放: mysql>selectfilm_id,titlefromfilm_textwherefilm_id=1001;等待 |
释放锁: mysql>unlocktables;QueryOK,0rowsaffected(0.00sec) |
等待 |
Session2获得锁,查询返回: mysql>selectfilm_id,titlefromfilm_textwherefilm_id=1001;+---------+-------+ |film_id|title| +---------+-------+ |1001 |Test | +---------+-------+ 1rowinset(57.59sec) |
如何加表锁
MyISAM在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作(UPDATE、DELETE、INSERT等)前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此,用户一般不需要直接用LOCKTABLE命令给MyISAM表显式加锁。在本书的示例中,显式加锁基本上都是为了方便而已,并非必须如此。
给MyISAM表显示加锁,一般是为了在一定程度模拟事务操作,实现对某一时间点多个表的一致性读取。例如,有一个订单表orders,其中记录有各订单的总金额total,同时还有一个订单明细表order_detail,其中记录有各订单每一产品的金额小计subtotal,假设我们需要检查这两个表的金额合计是否相符,可能就需要执行如下两条SQL:
Selectsum(total)fromorders; Selectsum(subtotal)fromorder_detail;
这时,如果不先给两个表加锁,就可能产生错误的结果,因为第一条语句执行过程中,order_detail表可能已经发生了改变。因此,正确的方法应该是:
Locktablesordersreadlocal,order_detailreadlocal; Selectsum(total)fromorders; Selectsum(subtotal)fromorder_detail; Unlocktables;
要特别说明以下两点内容。
上面的例子在LOCKTABLES时加了“local”选项,其作用就是在满足MyISAM表并发插入条件的情况下,允许其他用户在表尾并发插入记录,有关MyISAM表的并发插入问题,在后面的章节中还会进一步介绍。
在用LOCKTABLES给表显式加表锁时,必须同时取得所有涉及到表的锁,并且MySQL不支持锁升级。也就是说,在执行LOCKTABLES后,只能访问显式加锁的这些表,不能访问未加锁的表;同时,如果加的是读锁,那么只能执行查询操作,而不能执行更新操作。其实,在自动加锁的情况下也基本如此,MyISAM总是一次获得SQL语句所需要的全部锁。这也正是MyISAM表不会出现死锁(DeadlockFree)的原因。
在如下表所示的例子中,一个session使用LOCKTABLE命令给表film_text加了读锁,这个session可以查询锁定表中的记录,但更新或访问其他表都会提示错误;同时,另外一个session可以查询表中的记录,但更新就会出现锁等待。
MyISAM存储引擎的读阻塞写例子
session_1 | session_2 |
获得表film_text的READ锁定 mysql>locktablefilm_textwrite;QueryOK,0rowsaffected(0.00sec) |
|
当前session可以查询该表记录 mysql>selectfilm_id,titlefromfilm_textwherefilm_id=1001;+---------+------------------+ |film_id|title | +---------+------------------+ |1001 |ACADEMYDINOSAUR| +---------+------------------+ 1rowinset(0.00sec) |
其他session也可以查询该表的记录 mysql>selectfilm_id,titlefromfilm_textwherefilm_id=1001;+---------+------------------+ |film_id|title | +---------+------------------+ |1001 |ACADEMYDINOSAUR| +---------+------------------+ 1rowinset(0.00sec) |
当前session不能查询没有锁定的表 mysql>selectfilm_id,titlefromfilmwherefilm_id=1001;ERROR1100(HY000):Table'film'wasnotlockedwithLOCKTABLES |
其他session可以查询或者更新未锁定的表 mysql>selectfilm_id,titlefromfilmwherefilm_id=1001;+---------+---------------+ |film_id|title | +---------+---------------+ |1001 |updaterecord| +---------+---------------+ 1rowinset(0.00sec) mysql>updatefilmsettitle='Test'wherefilm_id=1001; QueryOK,1rowaffected(0.04sec) Rowsmatched:1 Changed:1 Warnings:0 |
当前session中插入或者更新锁定的表都会提示错误: mysql>insertintofilm_text(film_id,title)values(1002,'Test');ERROR1099(HY000):Table'film_text'waslockedwithaREADlockandcan'tbeupdated mysql>updatefilm_textsettitle='Test'wherefilm_id=1001; ERROR1099(HY000):Table'film_text'waslockedwithaREADlockandcan'tbeupdated |
其他session更新锁定表会等待获得锁: mysql>updatefilm_textsettitle='Test'wherefilm_id=1001;等待 |
释放锁 mysql>unlocktables;QueryOK,0rowsaffected(0.00sec) |
等待 |
Session获得锁,更新操作完成: mysql>updatefilm_textsettitle='Test'wherefilm_id=1001;QueryOK,1rowaffected(1min0.71sec) Rowsmatched:1 Changed:1 Warnings:0 |
注意,当使用LOCKTABLES时,不仅需要一次锁定用到的所有表,而且,同一个表在SQL语句中出现多少次,就要通过与SQL语句中相同的别名锁定多少次,否则也会出错!举例说明如下。
(1)对actor表获得读锁:
mysql>locktableactorread; QueryOK,0rowsaffected(0.00sec)
(2)但是通过别名访问会提示错误:
mysql>selecta.first_name,a.last_name,b.first_name,b.last_namefromactora,actorbwherea.first_name=b.first_nameanda.first_name='Lisa'anda.last_name='Tom'anda.last_name<>b.last_name; ERROR1100(HY000):Table'a'wasnotlockedwithLOCKTABLES
(3)需要对别名分别锁定:
mysql>locktableactorasaread,actorasbread; QueryOK,0rowsaffected(0.00sec)
(4)按照别名的查询可以正确执行:
mysql>selecta.first_name,a.last_name,b.first_name,b.last_namefromactora,actorbwherea.first_name=b.first_nameanda.first_name='Lisa'anda.last_name='Tom'anda.last_name<>b.last_name; +------------+-----------+------------+-----------+ |first_name|last_name|first_name|last_name| +------------+-----------+------------+-----------+ |Lisa|Tom|LISA|MONROE| +------------+-----------+------------+-----------+ 1rowinset(0.00sec)
并发插入(ConcurrentInserts)
上文提到过MyISAM表的读和写是串行的,但这是就总体而言的。在一定条件下,MyISAM表也支持查询和插入操作的并发进行。
MyISAM存储引擎有一个系统变量concurrent_insert,专门用以控制其并发插入的行为,其值分别可以为0、1或2。
当concurrent_insert设置为0时,不允许并发插入。
当concurrent_insert设置为1时,如果MyISAM表中没有空洞(即表的中间没有被删除的行),MyISAM允许在一个进程读表的同时,另一个进程从表尾插入记录。这也是MySQL的默认设置。
当concurrent_insert设置为2时,无论MyISAM表中有没有空洞,都允许在表尾并发插入记录。
在如下表所示的例子中,session_1获得了一个表的READLOCAL锁,该线程可以对表进行查询操作,但不能对表进行更新操作;其他的线程(session_2),虽然不能对表进行删除和更新操作,但却可以对该表进行并发插入操作,这里假设该表中间不存在空洞。
MyISAM存储引擎的读写(INSERT)并发例子
session_1 | session_2 |
获得表film_text的READLOCAL锁定 mysql>locktablefilm_textreadlocal;QueryOK,0rowsaffected(0.00sec) |
|
当前session不能对锁定表进行更新或者插入操作: mysql>insertintofilm_text(film_id,title)values(1002,'Test');ERROR1099(HY000):Table'film_text'waslockedwithaREADlockandcan'tbeupdated mysql>updatefilm_textsettitle='Test'wherefilm_id=1001; ERROR1099(HY000):Table'film_text'waslockedwithaREADlockandcan'tbeupdated |
其他session可以进行插入操作,但是更新会等待: mysql>insertintofilm_text(film_id,title)values(1002,'Test');QueryOK,1rowaffected(0.00sec) mysql>updatefilm_textsettitle='UpdateTest'wherefilm_id=1001; 等待 |
当前session不能访问其他session插入的记录: mysql>selectfilm_id,titlefromfilm_textwherefilm_id=1002;Emptyset(0.00sec) |
|
释放锁: mysql>unlocktables; |
等待 |
当前session解锁后可以获得其他session插入的记录: mysql>selectfilm_id,titlefromfilm_textwherefilm_id=1002;+---------+-------+ |film_id|title| +---------+-------+ |1002 |Test | +---------+-------+ 1rowinset(0.00sec) |
Session2获得锁,更新操作完成: mysql>updatefilm_textsettitle='UpdateTest'wherefilm_id=1001;QueryOK,1rowaffected(1min17.75sec) Rowsmatched:1 Changed:1 Warnings:0 |
可以利用MyISAM存储引擎的并发插入特性,来解决应用中对同一表查询和插入的锁争用。例如,将concurrent_insert系统变量设为2,总是允许并发插入;同时,通过定期在系统空闲时段执行OPTIMIZETABLE语句来整理空间碎片,收回因删除记录而产生的中间空洞。有关OPTIMIZETABLE语句的详细介绍,可以参见第18章中“两个简单实用的优化方法”一节的内容。
MyISAM的锁调度
前面讲过,MyISAM存储引擎的读锁和写锁是互斥的,读写操作是串行的。那么,一个进程请求某个MyISAM表的读锁,同时另一个进程也请求同一表的写锁,MySQL如何处理呢?答案是写进程先获得锁。不仅如此,即使读请求先到锁等待队列,写请求后到,写锁也会插到读锁请求之前!这是因为MySQL认为写请求一般比读请求要重要。这也正是MyISAM表不太适合于有大量更新操作和查询操作应用的原因,因为,大量的更新操作会造成查询操作很难获得读锁,从而可能永远阻塞。这种情况有时可能会变得非常糟糕!幸好我们可以通过一些设置来调节MyISAM的调度行为。
通过指定启动参数low-priority-updates,使MyISAM引擎默认给予读请求以优先的权利。
通过执行命令SETLOW_PRIORITY_UPDATES=1,使该连接发出的更新请求优先级降低。
通过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,降低该语句的优先级。
虽然上面3种方法都是要么更新优先,要么查询优先的方法,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题。
另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级降低,给读进程一定获得锁的机会。
上面已经讨论了写优先调度机制带来的问题和解决办法。这里还要强调一点:一些需要长时间运行的查询操作,也会使写进程“饿死”!因此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语句来解决问题,因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行。
InnoDB锁问题
InnoDB与MyISAM的最大不同有两点:一是支持事务(TRANSACTION);二是采用了行级锁。行级锁与表级锁本来就有许多不同之处,另外,事务的引入也带来了一些新问题。下面我们先介绍一点背景知识,然后详细讨论InnoDB的锁问题。
背景知识
1.事务(Transaction)及其ACID属性
事务是由一组SQL语句组成的逻辑处理单元,事务具有以下4个属性,通常简称为事务的ACID属性。
原子性(Atomicity):事务是一个原子操作单元,其对数据的修改,要么全都执行,要么全都不执行。
一致性(Consistent):在事务开始和完成时,数据都必须保持一致状态。这意味着所有相关的数据规则都必须应用于事务的修改,以保持数据的完整性;事务结束时,所有的内部数据结构(如B树索引或双向链表)也都必须是正确的。
隔离性(Isolation):数据库系统提供一定的隔离机制,保证事务在不受外部并发操作影响的“独立”环境执行。这意味着事务处理过程中的中间状态对外部是不可见的,反之亦然。
持久性(Durable):事务完成之后,它对于数据的修改是永久性的,即使出现系统故障也能够保持。
银行转帐就是事务的一个典型例子。
2.并发事务处理带来的问题
相对于串行处理来说,并发事务处理能大大增加数据库资源的利用率,提高数据库系统的事务吞吐量,从而可以支持更多的用户。但并发事务处理也会带来一些问题,主要包括以下几种情况。
更新丢失(LostUpdate):当两个或多个事务选择同一行,然后基于最初选定的值更新该行时,由于每个事务都不知道其他事务的存在,就会发生丢失更新问题--最后的更新覆盖了由其他事务所做的更新。例如,两个编辑人员制作了同一文档的电子副本。每个编辑人员独立地更改其副本,然后保存更改后的副本,这样就覆盖了原始文档。最后保存其更改副本的编辑人员覆盖另一个编辑人员所做的更改。如果在一个编辑人员完成并提交事务之前,另一个编辑人员不能访问同一文件,则可避免此问题。
脏读(DirtyReads):一个事务正在对一条记录做修改,在这个事务完成并提交前,这条记录的数据就处于不一致状态;这时,另一个事务也来读取同一条记录,如果不加控制,第二个事务读取了这些“脏”数据,并据此做进一步的处理,就会产生未提交的数据依赖关系。这种现象被形象地叫做"脏读"。
不可重复读(Non-RepeatableReads):一个事务在读取某些数据后的某个时间,再次读取以前读过的数据,却发现其读出的数据已经发生了改变、或某些记录已经被删除了!这种现象就叫做“不可重复读”。
幻读(PhantomReads):一个事务按相同的查询条件重新读取以前检索过的数据,却发现其他事务插入了满足其查询条件的新数据,这种现象就称为“幻读”。
3.事务隔离级别
在上面讲到的并发事务处理带来的问题中,“更新丢失”通常是应该完全避免的。但防止更新丢失,并不能单靠数据库事务控制器来解决,需要应用程序对要更新的数据加必要的锁来解决,因此,防止更新丢失应该是应用的责任。
“脏读”、“不可重复读”和“幻读”,其实都是数据库读一致性问题,必须由数据库提供一定的事务隔离机制来解决。数据库实现事务隔离的方式,基本上可分为以下两种。
一种是在读取数据前,对其加锁,阻止其他事务对数据进行修改。
另一种是不用加任何锁,通过一定机制生成一个数据请求时间点的一致性数据快照(Snapshot),并用这个快照来提供一定级别(语句级或事务级)的一致性读取。从用户的角度来看,好像是数据库可以提供同一数据的多个版本,因此,这种技术叫做数据多版本并发控制(MultiVersionConcurrencyControl,简称MVCC或MCC),也经常称为多版本数据库。
数据库的事务隔离越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使事务在一定程度上“串行化”进行,这显然与“并发”是矛盾的。同时,不同的应用对读一致性和事务隔离程度的要求也是不同的,比如许多应用对“不可重复读”和“幻读”并不敏感,可能更关心数据并发访问的能力。
为了解决“隔离”与“并发”的矛盾,ISO/ANSISQL92定义了4个事务隔离级别,每个级别的隔离程度不同,允许出现的副作用也不同,应用可以根据自己的业务逻辑要求,通过选择不同的隔离级别来平衡“隔离”与“并发”的矛盾。下表很好地概括了这4个隔离级别的特性。
4种隔离级别比较
读数据一致性及允许的并发副作用 隔离级别 |
读数据一致性 | 脏读 | 不可重复读 | 幻读 |
未提交读(Readuncommitted) |
最低级别,只能保证不读取物理上损坏的数据 | 是 | 是 | 是 |
已提交度(Readcommitted) |
语句级 | 否 | 是 | 是 |
可重复读(Repeatableread) |
事务级 | 否 | 否 | 是 |
可序列化(Serializable) |
最高级别,事务级 | 否 | 否 | 否 |
最后要说明的是:各具体数据库并不一定完全实现了上述4个隔离级别,例如,Oracle只提供Readcommitted和Serializable两个标准隔离级别,另外还提供自己定义的Readonly隔离级别;SQLServer除支持上述ISO/ANSISQL92定义的4个隔离级别外,还支持一个叫做“快照”的隔离级别,但严格来说它是一个用MVCC实现的Serializable隔离级别。MySQL支持全部4个隔离级别,但在具体实现时,有一些特点,比如在一些隔离级别下是采用MVCC一致性读,但某些情况下又不是,这些内容在后面的章节中将会做进一步介绍。
获取InnoDB行锁争用情况
可以通过检查InnoDB_row_lock状态变量来分析系统上的行锁的争夺情况:
mysql>showstatuslike'innodb_row_lock%'; +-------------------------------+-------+ |Variable_name|Value| +-------------------------------+-------+ |InnoDB_row_lock_current_waits|0| |InnoDB_row_lock_time|0| |InnoDB_row_lock_time_avg|0| |InnoDB_row_lock_time_max|0| |InnoDB_row_lock_waits|0| +-------------------------------+-------+ 5rowsinset(0.01sec)
如果发现锁争用比较严重,如InnoDB_row_lock_waits和InnoDB_row_lock_time_avg的值比较高,还可以通过设置InnoDBMonitors来进一步观察发生锁冲突的表、数据行等,并分析锁争用的原因。
具体方法如下:
mysql>CREATETABLEinnodb_monitor(aINT)ENGINE=INNODB; QueryOK,0rowsaffected(0.14sec)
然后就可以用下面的语句来进行查看:
mysql>Showinnodbstatus\G; ***************************1.row*************************** Type:InnoDB Name: Status: … … ------------ TRANSACTIONS ------------ Trxidcounter0117472192 Purgedonefortrx'sn:o<0117472190undon:o<00 Historylistlength17 Totalnumberoflockstructsinrowlockhashtable0 LISTOFTRANSACTIONSFOREACHSESSION: ---TRANSACTION0117472185,notstarted,processno11052,OSthreadid1158191456 MySQLthreadid200610,queryid291197localhostroot ---TRANSACTION0117472183,notstarted,processno11052,OSthreadid1158723936 MySQLthreadid199285,queryid291199localhostroot Showinnodbstatus …
监视器可以通过发出下列语句来停止查看:
mysql>DROPTABLEinnodb_monitor; QueryOK,0rowsaffected(0.05sec)
设置监视器后,在SHOWINNODBSTATUS的显示内容中,会有详细的当前锁等待的信息,包括表名、锁类型、锁定记录的情况等,便于进行进一步的分析和问题的确定。打开监视器以后,默认情况下每15秒会向日志中记录监控的内容,如果长时间打开会导致.err文件变得非常的巨大,所以用户在确认问题原因之后,要记得删除监控表以关闭监视器,或者通过使用“--console”选项来启动服务器以关闭写日志文件。
InnoDB的行锁模式及加锁方法
InnoDB实现了以下两种类型的行锁。
共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
排他锁(X):允许获得排他锁的事务更新数据,阻止其他事务取得相同数据集的共享读锁和排他写锁。另外,为了允许行锁和表锁共存,实现多粒度锁机制,InnoDB还有两种内部使用的意向锁(IntentionLocks),这两种意向锁都是表锁。
意向共享锁(IS):事务打算给数据行加行共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁。
意向排他锁(IX):事务打算给数据行加行排他锁,事务在给一个数据行加排他锁前必须先取得该表的IX锁。
上述锁模式的兼容情况具体如下表所示。
InnoDB行锁模式兼容性列表
请求锁模式 是否兼容 当前锁模式 |
X | IX | S | IS |
X | 冲突 | 冲突 | 冲突 | 冲突 |
IX | 冲突 | 兼容 | 冲突 | 兼容 |
S | 冲突 | 冲突 | 兼容 | 兼容 |
IS | 冲突 | 兼容 | 兼容 | 兼容 |
如果一个事务请求的锁模式与当前的锁兼容,InnoDB就将请求的锁授予该事务;反之,如果两者不兼容,该事务就要等待锁释放。
意向锁是InnoDB自动加的,不需用户干预。对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X);对于普通SELECT语句,InnoDB不会加任何锁;事务可以通过以下语句显示给记录集加共享锁或排他锁。
共享锁(S):SELECT*FROMtable_nameWHERE...LOCKINSHAREMODE。
排他锁(X):SELECT*FROMtable_nameWHERE...FORUPDATE。
用SELECT...INSHAREMODE获得共享锁,主要用在需要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。但是如果当前事务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用SELECT...FORUPDATE方式获得排他锁。
在如下表所示的例子中,使用了SELECT...INSHAREMODE加锁后再更新记录,看看会出现什么情况,其中actor表的actor_id字段为主键。
InnoDB存储引擎的共享锁例子
session_1 | session_2 |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) mysql>selectactor_id,first_name,last_namefromactorwhereactor_id=178; +----------+------------+-----------+ |actor_id|first_name|last_name| +----------+------------+-----------+ |178 |LISA |MONROE | +----------+------------+-----------+ 1rowinset(0.00sec) |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) mysql>selectactor_id,first_name,last_namefromactorwhereactor_id=178; +----------+------------+-----------+ |actor_id|first_name|last_name| +----------+------------+-----------+ |178 |LISA |MONROE | +----------+------------+-----------+ 1rowinset(0.00sec) |
当前session对actor_id=178的记录加sharemode的共享锁: mysql>selectactor_id,first_name,last_namefromactorwhereactor_id=178lockinsharemode;+----------+------------+-----------+ |actor_id|first_name|last_name| +----------+------------+-----------+ |178 |LISA |MONROE | +----------+------------+-----------+ 1rowinset(0.01sec) |
|
其他session仍然可以查询记录,并也可以对该记录加sharemode的共享锁: mysql>selectactor_id,first_name,last_namefromactorwhereactor_id=178lockinsharemode;+----------+------------+-----------+ |actor_id|first_name|last_name| +----------+------------+-----------+ |178 |LISA |MONROE | +----------+------------+-----------+ 1rowinset(0.01sec) |
|
当前session对锁定的记录进行更新操作,等待锁: mysql>updateactorsetlast_name='MONROET'whereactor_id=178;等待 |
|
其他session也对该记录进行更新操作,则会导致死锁退出: mysql>updateactorsetlast_name='MONROET'whereactor_id=178; |
|
获得锁后,可以成功更新: mysql>updateactorsetlast_name='MONROET'whereactor_id=178;QueryOK,1rowaffected(17.67sec) Rowsmatched:1 Changed:1 Warnings:0 |
当使用SELECT...FORUPDATE加锁后再更新记录,出现如下表所示的情况。
InnoDB存储引擎的排他锁例子
session_1 | session_2 |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) mysql>selectactor_id,first_name,last_namefromactorwhereactor_id=178; +----------+------------+-----------+ |actor_id|first_name|last_name| +----------+------------+-----------+ |178 |LISA |MONROE | +----------+------------+-----------+ 1rowinset(0.00sec) |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) mysql>selectactor_id,first_name,last_namefromactorwhereactor_id=178; +----------+------------+-----------+ |actor_id|first_name|last_name| +----------+------------+-----------+ |178 |LISA |MONROE | +----------+------------+-----------+ 1rowinset(0.00sec) |
当前session对actor_id=178的记录加forupdate的排它锁: mysql>selectactor_id,first_name,last_namefromactorwhereactor_id=178forupdate;+----------+------------+-----------+ |actor_id|first_name|last_name| +----------+------------+-----------+ |178 |LISA |MONROE | +----------+------------+-----------+ 1rowinset(0.00sec) |
|
其他session可以查询该记录,但是不能对该记录加共享锁,会等待获得锁: mysql>selectactor_id,first_name,last_namefromactorwhereactor_id=178;+----------+------------+-----------+ |actor_id|first_name|last_name| +----------+------------+-----------+ |178 |LISA |MONROE | +----------+------------+-----------+ 1rowinset(0.00sec) mysql>selectactor_id,first_name,last_namefromactorwhereactor_id=178forupdate; 等待 |
|
当前session可以对锁定的记录进行更新操作,更新后释放锁: mysql>updateactorsetlast_name='MONROET'whereactor_id=178;QueryOK,1rowaffected(0.00sec) Rowsmatched:1 Changed:1 Warnings:0 mysql>commit; QueryOK,0rowsaffected(0.01sec) |
|
其他session获得锁,得到其他session提交的记录: mysql>selectactor_id,first_name,last_namefromactorwhereactor_id=178forupdate;+----------+------------+-----------+ |actor_id|first_name|last_name| +----------+------------+-----------+ |178 |LISA |MONROET | +----------+------------+-----------+ 1rowinset(9.59sec) |
InnoDB行锁实现方式
InnoDB行锁是通过给索引上的索引项加锁来实现的,这一点MySQL与Oracle不同,后者是通过在数据块中对相应数据行加锁来实现的。InnoDB这种行锁实现特点意味着:只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁!
在实际应用中,要特别注意InnoDB行锁的这一特性,不然的话,可能导致大量的锁冲突,从而影响并发性能。下面通过一些实际例子来加以说明。
(1)在不通过索引条件查询的时候,InnoDB确实使用的是表锁,而不是行锁。
在如下所示的例子中,开始tab_no_index表没有索引:
mysql>createtabletab_no_index(idint,namevarchar(10))engine=innodb; QueryOK,0rowsaffected(0.15sec) mysql>insertintotab_no_indexvalues(1,'1'),(2,'2'),(3,'3'),(4,'4'); QueryOK,4rowsaffected(0.00sec) Records:4Duplicates:0Warnings:0
InnoDB存储引擎的表在不使用索引时使用表锁例子
session_1 | session_2 |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) mysql>select*fromtab_no_indexwhereid=1; +------+------+ |id |name| +------+------+ |1 |1 | +------+------+ 1rowinset(0.00sec) |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) mysql>select*fromtab_no_indexwhereid=2; +------+------+ |id |name| +------+------+ |2 |2 | +------+------+ 1rowinset(0.00sec) |
mysql>select*fromtab_no_indexwhereid=1forupdate; +------+------+ |id |name| +------+------+ |1 |1 | +------+------+ 1rowinset(0.00sec) |
|
mysql>select*fromtab_no_indexwhereid=2forupdate;
等待 |
在如上表所示的例子中,看起来session_1只给一行加了排他锁,但session_2在请求其他行的排他锁时,却出现了锁等待!原因就是在没有索引的情况下,InnoDB只能使用表锁。当我们给其增加一个索引后,InnoDB就只锁定了符合条件的行,如下表所示。
创建tab_with_index表,id字段有普通索引:
mysql>createtabletab_with_index(idint,namevarchar(10))engine=innodb; QueryOK,0rowsaffected(0.15sec) mysql>altertabletab_with_indexaddindexid(id); QueryOK,4rowsaffected(0.24sec) Records:4Duplicates:0Warnings:0
InnoDB存储引擎的表在使用索引时使用行锁例子
session_1 | session_2 |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) mysql>select*fromtab_with_indexwhereid=1; +------+------+ |id |name| +------+------+ |1 |1 | +------+------+ 1rowinset(0.00sec) |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) mysql>select*fromtab_with_indexwhereid=2; +------+------+ |id |name| +------+------+ |2 |2 | +------+------+ 1rowinset(0.00sec) |
mysql>select*fromtab_with_indexwhereid=1forupdate; +------+------+ |id |name| +------+------+ |1 |1 | +------+------+ 1rowinset(0.00sec) |
|
mysql>select*fromtab_with_indexwhereid=2forupdate; +------+------+ |id |name| +------+------+ |2 |2 | +------+------+ 1rowinset(0.00sec) |
(2)由于MySQL的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然是访问不同行的记录,但是如果是使用相同的索引键,是会出现锁冲突的。应用设计的时候要注意这一点。
在如下表所示的例子中,表tab_with_index的id字段有索引,name字段没有索引:
mysql>altertabletab_with_indexdropindexname; QueryOK,4rowsaffected(0.22sec) Records:4Duplicates:0Warnings:0 mysql>insertintotab_with_indexvalues(1,'4'); QueryOK,1rowaffected(0.00sec) mysql>select*fromtab_with_indexwhereid=1; +------+------+ |id|name| +------+------+ |1|1| |1|4| +------+------+ 2rowsinset(0.00sec)
InnoDB存储引擎使用相同索引键的阻塞例子
session_1 | session_2 |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) |
mysql>select*fromtab_with_indexwhereid=1andname='1'forupdate; +------+------+ |id |name| +------+------+ |1 |1 | +------+------+ 1rowinset(0.00sec) |
|
虽然session_2访问的是和session_1不同的记录,但是因为使用了相同的索引,所以需要等待锁: mysql>select*fromtab_with_indexwhereid=1andname='4'forupdate;等待 |
(3)当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,另外,不论是使用主键索引、唯一索引或普通索引,InnoDB都会使用行锁来对数据加锁。
在如下表所示的例子中,表tab_with_index的id字段有主键索引,name字段有普通索引:
mysql>altertabletab_with_indexaddindexname(name); QueryOK,5rowsaffected(0.23sec) Records:5Duplicates:0Warnings:0
InnoDB存储引擎的表使用不同索引的阻塞例子
session_1 | session_2 |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) |
mysql>select*fromtab_with_indexwhereid=1forupdate; +------+------+ |id |name| +------+------+ |1 |1 | |1 |4 | +------+------+ 2rowsinset(0.00sec) |
|
Session_2使用name的索引访问记录,因为记录没有被索引,所以可以获得锁: mysql>select*fromtab_with_indexwherename='2'forupdate;+------+------+ |id |name| +------+------+ |2 |2 | +------+------+ 1rowinset(0.00sec) |
|
由于访问的记录已经被session_1锁定,所以等待获得锁。: mysql>select*fromtab_with_indexwherename='4'forupdate; |
(4)即便在条件中使用了索引字段,但是否使用索引来检索数据是由MySQL通过判断不同执行计划的代价来决定的,如果MySQL认为全表扫描效率更高,比如对一些很小的表,它就不会使用索引,这种情况下InnoDB将使用表锁,而不是行锁。因此,在分析锁冲突时,别忘了检查SQL的执行计划,以确认是否真正使用了索引。
在下面的例子中,检索值的数据类型与索引字段不同,虽然MySQL能够进行数据类型转换,但却不会使用索引,从而导致InnoDB使用表锁。通过用explain检查两条SQL的执行计划,我们可以清楚地看到了这一点。
例子中tab_with_index表的name字段有索引,但是name字段是varchar类型的,如果where条件中不是和varchar类型进行比较,则会对name进行类型转换,而执行的全表扫描。
mysql>altertabletab_no_indexaddindexname(name); QueryOK,4rowsaffected(8.06sec) Records:4Duplicates:0Warnings:0 mysql>explainselect*fromtab_with_indexwherename=1\G ***************************1.row*************************** id:1 select_type:SIMPLE table:tab_with_index type:ALL possible_keys:name key:NULL key_len:NULL ref:NULL rows:4 Extra:Usingwhere 1rowinset(0.00sec) mysql>explainselect*fromtab_with_indexwherename='1'\G ***************************1.row*************************** id:1 select_type:SIMPLE table:tab_with_index type:ref possible_keys:name key:name key_len:23 ref:const rows:1 Extra:Usingwhere 1rowinset(0.00sec)
间隙锁(Next-Key锁)
当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁;对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。
举例来说,假如emp表中只有101条记录,其empid的值分别是1,2,...,100,101,下面的SQL:
Select*fromempwhereempid>100forupdate;
是一个范围条件的检索,InnoDB不仅会对符合条件的empid值为101的记录加锁,也会对empid大于101(这些记录并不存在)的“间隙”加锁。
InnoDB使用间隙锁的目的,一方面是为了防止幻读,以满足相关隔离级别的要求,对于上面的例子,要是不使用间隙锁,如果其他事务插入了empid大于100的任何记录,那么本事务如果再次执行上述语句,就会发生幻读;另外一方面,是为了满足其恢复和复制的需要。有关其恢复和复制对锁机制的影响,以及不同隔离级别下InnoDB使用间隙锁的情况,在后续的章节中会做进一步介绍。
很显然,在使用范围条件检索并锁定记录时,InnoDB这种加锁机制会阻塞符合条件范围内键值的并发插入,这往往会造成严重的锁等待。因此,在实际应用开发中,尤其是并发插入比较多的应用,我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件。
还要特别说明的是,InnoDB除了通过范围条件加锁时使用间隙锁外,如果使用相等条件请求给一个不存在的记录加锁,InnoDB也会使用间隙锁!
在如下表所示的例子中,假如emp表中只有101条记录,其empid的值分别是1,2,......,100,101。
InnoDB存储引擎的间隙锁阻塞例子
session_1 | session_2 |
mysql>select@@tx_isolation; +-----------------+ |@@tx_isolation | +-----------------+ |REPEATABLE-READ| +-----------------+ 1rowinset(0.00sec) mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) |
mysql>select@@tx_isolation; +-----------------+ |@@tx_isolation | +-----------------+ |REPEATABLE-READ| +-----------------+ 1rowinset(0.00sec) mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) |
当前session对不存在的记录加forupdate的锁: mysql>select*fromempwhereempid=102forupdate;Emptyset(0.00sec) |
|
这时,如果其他session插入empid为102的记录(注意:这条记录并不存在),也会出现锁等待: mysql>insertintoemp(empid,...)values(102,...);阻塞等待 |
|
Session_1执行rollback: mysql>rollback; |
|
由于其他session_1回退后释放了Next-Key锁,当前session可以获得锁并成功插入记录: mysql>insertintoemp(empid,...)values(102,...);QueryOK,1rowaffected(13.35sec) |
恢复和复制的需要,对InnoDB锁机制的影响
MySQL通过BINLOG录执行成功的INSERT、UPDATE、DELETE等更新数据的SQL语句,并由此实现MySQL数据库的恢复和主从复制(可以参见本书“管理篇”的介绍)。MySQL的恢复机制(复制其实就是在SlaveMysql不断做基于BINLOG的恢复)有以下特点。
l一是MySQL的恢复是SQL语句级的,也就是重新执行BINLOG中的SQL语句。这与Oracle数据库不同,Oracle是基于数据库文件块的。
l二是MySQL的Binlog是按照事务提交的先后顺序记录的,恢复也是按这个顺序进行的。这点也与Oralce不同,Oracle是按照系统更新号(SystemChangeNumber,SCN)来恢复数据的,每个事务开始时,Oracle都会分配一个全局唯一的SCN,SCN的顺序与事务开始的时间顺序是一致的。
从上面两点可知,MySQL的恢复机制要求:在一个事务未提交前,其他并发事务不能插入满足其锁定条件的任何记录,也就是不允许出现幻读,这已经超过了ISO/ANSISQL92“可重复读”隔离级别的要求,实际上是要求事务要串行化。这也是许多情况下,InnoDB要用到间隙锁的原因,比如在用范围条件更新记录时,无论在ReadCommited或是RepeatableRead隔离级别下,InnoDB都要使用间隙锁,但这并不是隔离级别要求的,有关InnoDB在不同隔离级别下加锁的差异在下一小节还会介绍。
另外,对于“insertintotarget_tabselect*fromsource_tabwhere...”和“createtablenew_tab...select...Fromsource_tabwhere...(CTAS)”这种SQL语句,用户并没有对source_tab做任何更新操作,但MySQL对这种SQL语句做了特别处理。先来看如下表的例子。
CTAS操作给原表加锁例子
session_1 | session_2 |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) mysql>select*fromtarget_tab; Emptyset(0.00sec) mysql>select*fromsource_tabwherename='1'; +----+------+----+ |d1|name|d2| +----+------+----+ | 4|1 | 1| | 5|1 | 1| | 6|1 | 1| | 7|1 | 1| | 8|1 | 1| +----+------+----+ 5rowsinset(0.00sec) |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) mysql>select*fromtarget_tab; Emptyset(0.00sec) mysql>select*fromsource_tabwherename='1'; +----+------+----+ |d1|name|d2| +----+------+----+ | 4|1 | 1| | 5|1 | 1| | 6|1 | 1| | 7|1 | 1| | 8|1 | 1| +----+------+----+ 5rowsinset(0.00sec) |
mysql>insertintotarget_tabselectd1,namefromsource_tabwherename='1'; QueryOK,5rowsaffected(0.00sec) Records:5 Duplicates:0 Warnings:0 |
|
mysql>updatesource_tabsetname='1'wherename='8';
等待 |
|
commit; | |
返回结果 commit; |
在上面的例子中,只是简单地读source_tab表的数据,相当于执行一个普通的SELECT语句,用一致性读就可以了。ORACLE正是这么做的,它通过MVCC技术实现的多版本数据来实现一致性读,不需要给source_tab加任何锁。我们知道InnoDB也实现了多版本数据,对普通的SELECT一致性读,也不需要加任何锁;但这里InnoDB却给source_tab加了共享锁,并没有使用多版本数据一致性读技术!
MySQL为什么要这么做呢?其原因还是为了保证恢复和复制的正确性。因为不加锁的话,如果在上述语句执行过程中,其他事务对source_tab做了更新操作,就可能导致数据恢复的结果错误。为了演示这一点,我们再重复一下前面的例子,不同的是在session_1执行事务前,先将系统变量innodb_locks_unsafe_for_binlog的值设置为“on”(其默认值为off),具体结果如下表所示。
CTAS操作不给原表加锁带来的安全问题例子
session_1 | session_2 |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) mysql>setinnodb_locks_unsafe_for_binlog='on' QueryOK,0rowsaffected(0.00sec) mysql>select*fromtarget_tab; Emptyset(0.00sec) mysql>select*fromsource_tabwherename='1'; +----+------+----+ |d1|name|d2| +----+------+----+ | 4|1 | 1| | 5|1 | 1| | 6|1 | 1| | 7|1 | 1| | 8|1 | 1| +----+------+----+ 5rowsinset(0.00sec) |
mysql>setautocommit=0; QueryOK,0rowsaffected(0.00sec) mysql>select*fromtarget_tab; Emptyset(0.00sec) mysql>select*fromsource_tabwherename='1'; +----+------+----+ |d1|name|d2| +----+------+----+ | 4|1 | 1| | 5|1 | 1| | 6|1 | 1| | 7|1 | 1| | 8|1 | 1| +----+------+----+ 5rowsinset(0.00sec) |
mysql>insertintotarget_tabselectd1,namefromsource_tabwherename='1'; QueryOK,5rowsaffected(0.00sec) Records:5 Duplicates:0 Warnings:0 |
|
session_1未提交,可以对session_1的select的记录进行更新操作。 mysql>updatesource_tabsetname='8'wherename='1';QueryOK,5rowsaffected(0.00sec) Rowsmatched:5 Changed:5 Warnings:0 mysql>select*fromsource_tabwherename='8'; +----+------+----+ |d1|name|d2| +----+------+----+ | 4|8 | 1| | 5|8 | 1| | 6|8 | 1| | 7|8 | 1| | 8|8 | 1| +----+------+----+ 5rowsinset(0.00sec) |
|
更新操作先提交 mysql>commit;QueryOK,0rowsaffected(0.05sec) |
|
插入操作后提交 mysql>commit;QueryOK,0rowsaffected(0.07sec) |
|
此时查看数据,target_tab中可以插入source_tab更新前的结果,这符合应用逻辑: mysql>select*fromsource_tabwherename='8';+----+------+----+ |d1|name|d2| +----+------+----+ | 4|8 | 1| | 5|8 | 1| | 6|8 | 1| | 7|8 | 1| | 8|8 | 1| +----+------+----+ 5rowsinset(0.00sec) mysql>select*fromtarget_tab; +------+------+ |id |name| +------+------+ |4 |1.00| |5 |1.00| |6 |1.00| |7 |1.00| |8 |1.00| +------+------+ 5rowsinset(0.00sec) |
mysql>select*fromtt1wherename='1'; Emptyset(0.00sec) mysql>select*fromsource_tabwherename='8'; +----+------+----+ |d1|name|d2| +----+------+----+ | 4|8 | 1| | 5|8 | 1| | 6|8 | 1| | 7|8 | 1| | 8|8 | 1| +----+------+----+ 5rowsinset(0.00sec) mysql>select*fromtarget_tab; +------+------+ |id |name| +------+------ |