详解python之heapq模块及排序操作
说到排序,很多人可能第一想到的就是sorted,但是你可能不知道python中其实还有还就中方法哟,并且好多种场景下效率都会比sorted高。那么接下来我就依次来介绍我所知道的排序操作。
sorted(iterable,*,key=None,reverse=False)
list1=[1,6,4,3,9,5] list2=['12','a6','4','c34','b9','5'] print(sorted(list1))#[1,3,4,5,6,9] print(sorted(list2))#['12','4','5','a6','b9','c34'] #总结上面两种排序:字符串排序根据元素首字符的ASCII比较进行排序, #数字类型按照大小排序,数字不能混合排序 list3=[ {'name':'jim','age':23,'price':500}, {'name':'mase','age':23,'price':600}, {'name':'tom','age':25,'price':2000}, {'name':'alice','age':22,'price':300}, {'name':'rose','age':21,'price':2400}, ] print(sorted(list3,key=lambdas:(s['age'],s['price']))) #[{'name':'rose','age':21,'price':2400},{'name':'alice','age':22,'price':300},{'name':'jim','age':23,'price':500},{'name':'mase','age':23,'price':600},{'name':'tom','age':25,'price':2000}] 最后的reverse参数我就不作说明了,就是把结果进行倒序,可用作降序排列 介绍一种比lambda效率高的方式: operator模块中的方法itemgetter >>>itemgetter(1)('ABCDEFG') 'B' >>>itemgetter(1,3,5)('ABCDEFG') ('B','D','F') >>>itemgetter(slice(2,None))('ABCDEFG') 'CDEFG 运用到上述代码 print(sorted(list3,key=itemgetter('age','price')))#结果同上但效率会比较高
接下来的排序操作涉及到一个非常重要的一种数据结构——堆,不过今天我主要介绍这个模块中的方法,具体什么是堆,及其还有一种数据结构——栈,有时间我会专门写一篇文章来介绍。
heapq(Python内置的模块)
__all__=['heappush','heappop','heapify','heapreplace','merge',
'nlargest','nsmallest','heappushpop']
接下来我们一一介绍。
nlargest与nsmallest,通过字面意思可以看出方法大致的作用,接下来动手测验
nlargest(n,iterable,key=None) nsmallest(n,iterable,key=None) #n:查找个数iterable:可迭代对象key:同sorted list1=[1,6,4,3,9,5] list2=['12','a6','4','c34','b9','5'] list3=[ {'name':'jim','age':23,'price':500}, {'name':'mase','age':23,'price':600}, {'name':'tom','age':25,'price':2000}, {'name':'alice','age':22,'price':300}, {'name':'rose','age':21,'price':2400}, ] fromoperatorimportitemgetter importheapq print(heapq.nlargest(len(list1),list1)) print(heapq.nlargest(len(list2),list2)) print(heapq.nlargest(len(list3),list3,key=itemgetter('age','price'))) #以上代码输出结果同sorted print(heapq.nsmallest(len(list1),list1)) print(heapq.nsmallest(len(list2),list2)) print(heapq.nsmallest(len(list3),list3,key=itemgetter('age','price'))) #结果是降序 [1,3,4,5,6,9] ['12','4','5','a6','b9','c34'] [{'name':'rose','age':21,'price':2400},{'name':'alice','age':22,'price':300},{'name':'jim','age':23,'price':500},{'name':'mase','age':23,'price':600},{'name':'tom','age':25,'price':2000}]
heappush,heappop,heapify,heapreplace,heappushpop
堆结构特点:heap[0]永远是最小的元素(利用此特性排序)
heapify:对序列进行堆排序,
heappush:在堆序列中添加值
heappop:删除最小值并返回
heappushpop:添加并删除堆中最小值且返回,添加之后删除
heapreplace:添加并删除队中最小值且返回,删除之后添加
nums=[54,23,64.,323,53,3,212,453,65] heapify(nums)#先进行堆排序 print(heappop(nums))#3 print(heappush(nums,50))#添加操作,返回None print(heappushpop(nums,10))#由于是添加后删除,所以返回10 print(heappop(nums))#23 print(heapreplace(nums,10))#和heappushpop,返回50 print(nums)#[10,53,54,65,323,64.0,212,453]
merge:合并多个序列
list1=[1,2,3,4,5,12] set1={2,3,9,23,54} s=list(merge(list1,set1)) print(s)#[1,2,2,3,3,4,5,9,12,54,23] #发现输出结果不仅进行了合并,还进行了排序,有意思哈,可是换个代码测验,你再看一下 list1=[31,2,83,24,5,12] set1={2,83,9,23,54} s=list(merge(list1,set1)) print(s)#[2,9,31,2,83,24,5,12,83,54,23] #你们肯定想这是什么鬼,一点都没有头绪,其实经过我的多次测验,还是有规律的,但是由于没有什么作用就不大篇幅说明了,喜欢刨根问题的小伙伴可以尝试自己思考一下。
小伙伴们有没有想我为何介绍这个模块,并且和排序放在一起呢,其实在很多时候我们需要找序列中的前几个最大值或者最小值,使用此模块中的方法是最好不过的了。
如果需要全部排序我们使用sorted,需要查找最大或最小的几个或者多个我们使用alargest/asmallest,查找最大最小使用max/min