详解Python中的测试工具
当我们在写程序的时候,我们需要通过测试来验证程序是否出错或者存在问题,但是,编写大量的测试来确保程序的每个细节都没问题会显得很繁琐。在Python中,我们可以借助一些标准模块来帮助我们自动完成测试过程,比如:
- unittest:一个通用的测试框架;
- doctest:一个更简单的模块,是为检查文档而设计的,但也非常适合用来编写单元测试。
下面,笔者将会简单介绍这两个模块在测试中的应用。
doctest
doctest模块会搜索那些看起来像是python交互式会话中的代码片段,然后尝试执行并验证结果。下面我们以doctest.testmod为例,函数doctest.testmod会读取模块中的所有文档字符串,查找看起来像是从交互式解释器中摘取的示例,再检查这些示例是否反映了实际情况。
我们先创建示例代码文件test_string_lower.py,完整代码如下:
#-*-coding:utf-8-*- defstring_lower(string): ''' 返回一个字符串的小写 :paramstring:type:str :return:thelowerofinputstring >>>string_lower('AbC') 'abc' >>>string_lower('ABC') 'abc' >>>string_lower('abc') 'abc' ''' returnstring.lower() if__name__=='__main__': importdoctest,test_string_lower doctest.testmod(test_string_lower)
首先先对程序进行说明,函数string_lower用于返回输入字符串的小写,函数中的注释中,一共包含了3个测试实例,期望尽可能地包含各种测试情况,接着在主函数中导入doctest,test_string_lower,再运行doctest中的testmod函数即可进行测试。
接着,我们开始测试。首先,在命令行中输入 pythontest_string_lower.py,运行后会发现什么都没有输出,但这其实是件好事,它表明程序中的所有测试都通过了!那么,如果我们想要获得更多的输出呢?可在运行脚本的时候增加参数 -v,这时候命令变成 pythontest_string_lower.py-v,输出的结果如下:
Trying: string_lower('AbC') Expecting: 'abc' ok Trying: string_lower('ABC') Expecting: 'abc' ok Trying: string_lower('abc') Expecting: 'abc' ok 1itemshadnotests: test_string_lower 1itemspassedalltests: 3testsintest_string_lower.string_lower 3testsin2items. 3passedand0failed. Testpassed
可以看到,程序测试的背后还是发生了很多事。接着,我们尝试着程序出错的情况,比如我们不小心把函数的返回写成了:
returnstring.upper()
这其实是返回输入字符串的大写了,而我们测试的实例却返回了输入字符串的小写,再运行该脚本(加上参数 -v),输出的结果如下:
Failedexample: string_lower('abc') Expected: 'abc' Got: 'ABC' 1itemshadnotests: test_string_lower ********************************************************************** 1itemshadfailures: 3of3intest_string_lower.string_lower 3testsin2items. 0passedand3failed. ***TestFailed***3failures.
这时候,程序测试失败,它不仅捕捉到了bug,还清楚地指出错误出在什么地方。我们不难把这个程序修改过来。
关于doctest模块的更详细的使用说明,可以参考网址: https://docs.python.org/2/lib...。
unittest
unittest类似于流行的Java测试框架JUnit,它比doctest更灵活,更强大,能够帮助你以结构化的方式来编写庞大而详尽的测试集。
我们以一个简单的示例入手,首先我们编写my_math.py脚本,代码如下:
#-*-coding:utf-8-*- defproduct(x,y): ''' :paramx:int,float :paramy:int,float :return:x*y ''' returnx*y
该函数实现的功能为:输入两个数x,y,返回这两个数的乘积。接着是test_my_math.py脚本,完整的代码如下:
importunittest,my_math classProductTestcase(unittest.TestCase): defsetUp(self): print('begintest') deftest_integers(self): forxinrange(-10,10): foryinrange(-10,10): p=my_math.product(x,y) self.assertEqual(p,x*y,'integermultiplicationfailed') deftest_floats(self): forxinrange(-10,10): foryinrange(-10,10): x=x/10 y=y/10 p=my_math.product(x,y) self.assertEqual(p,x*y,'integermultiplicationfailed') if__name__=='__main__': unittest.main()
函数unittest.main负责替你运行测试:在测试方法前执行setUp方法,示例化所有的TestCase子类,并运行所有名称以test打头的方法。assertEqual方法检车指定的条件(这里是相等),以判断指定的测试是成功了还是失败了。
接着,我们运行前面的测试,输出的结果如下:
begintest
.begintest
.
----------------------------------------------------------------------
Ran2testsin0.001s
OK
可以看到,该程序运行了两个测试,每个测试前都会输出'begintest', .表示测试成功,若测试失败,则返回的是 F。
接着模拟测试出错的情形,将my_math函数中的product方法改成返回:
returnx+y
再运行测试脚本,输出的结果如下:
begintest
Fbegintest
F
======================================================================
FAIL:test_floats(__main__.ProductTestcase)
----------------------------------------------------------------------
Traceback(mostrecentcalllast):
File"test_my_math.py",line20,intest_floats
self.assertEqual(p,x*y,'integermultiplicationfailed')
AssertionError:-2.0!=1.0:integermultiplicationfailed======================================================================
FAIL:test_integers(__main__.ProductTestcase)
----------------------------------------------------------------------
Traceback(mostrecentcalllast):
File"test_my_math.py",line12,intest_integers
self.assertEqual(p,x*y,'integermultiplicationfailed')
AssertionError:-20!=100:integermultiplicationfailed----------------------------------------------------------------------
Ran2testsin0.001sFAILED(failures=2)
两条测试都未通过,返回的是 F,并帮助你指出了错误的地方,接下来,你应该能快速地修复这个bug。
关于unittest模块的更加详细的说明,可以参考网址: https://docs.python.org/3/lib...。
总结
以上所述是小编给大家介绍的Python中的测试工具,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会技术回复大家的!