php解决约瑟夫环算法实例分析
本文实例讲述了php解决约瑟夫环算法。分享给大家供大家参考,具体如下:
今天偶遇一道算法题
“约瑟夫环”是一个数学的应用问题:一群猴子排成一圈,按1,2,…,n依次编号。然后从第1只开始数,数到第m只,把它踢出圈,从它后面再开始数,再数到第m只,在把它踢出去…,如此不停的进行下去,直到最后只剩下一只猴子为止,那只猴子就叫做大王。要求编程模拟此过程,输入m、n,输出最后那个大王的编号。
方法一:递归算法
functionkillMonkey($monkeys,$m,$current=0){ $number=count($monkeys); $num=1; if(count($monkeys)==1){ echo$monkeys[0]."成为猴王了"; return; } else{ while($num++<$m){ $current++; $current=$current%$number; } echo$monkeys[$current]."的猴子被踢掉了
"; array_splice($monkeys,$current,1); killMonkey($monkeys,$m,$current); } } $monkeys=array(1,2,3,4,5,6,7,8,9,10);//monkeys的编号 $m=3;//数到第几只猴子被踢出 killMonkey($monkeys,$m);
运行结果:
3的猴子被踢掉了
6的猴子被踢掉了
9的猴子被踢掉了
2的猴子被踢掉了
7的猴子被踢掉了
1的猴子被踢掉了
8的猴子被踢掉了
5的猴子被踢掉了
10的猴子被踢掉了
4成为猴王了
方法二:线性表应用
最后这个算法最牛,
哦,是这样的,每个猴子出列后,剩下的猴子又组成了另一个子问题。只是他们的编号变化了。第一个出列的猴子肯定是a[1]=m(mod)n(m/n的余数),他除去后剩下的猴子是a[1]+1,a[1]+2,…,n,1,2,…a[1]-2,a[1]-1,对应的新编号是1,2,3…n-1。设此时某个猴子的新编号是i,他原来的编号就是(i+a[1])%n。于是,这便形成了一个递归问题。假如知道了这个子问题(n-1个猴子)的解是x,那么原问题(n个猴子)的解便是:(x+m%n)%n=(x+m)%n。问题的起始条件:如果n=1,那么结果就是1。
functionyuesefu($n,$m){ $r=0; for($i=2;$i<=$n;$i++){ $r=($r+$m)%$i; } return$r+1; } echoyuesefu(10,3)."是猴王";
运行结果:
4是猴王
更多关于PHP相关内容感兴趣的读者可查看本站专题:《PHP数据结构与算法教程》、《php程序设计算法总结》、《php字符串(string)用法总结》、《PHP数组(Array)操作技巧大全》、《PHP常用遍历算法与技巧总结》及《PHP数学运算技巧总结》
希望本文所述对大家PHP程序设计有所帮助。