Pandas 缺失数据处理的实现
数据丢失(缺失)在现实生活中总是一个问题。机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题。在这些领域,缺失值处理是使模型更加准确和有效的重点。
使用重构索引(reindexing),创建了一个缺少值的DataFrame。在输出中,NaN表示不是数字的值。
一、检查缺失值
为了更容易地检测缺失值(以及跨越不同的数组dtype),Pandas提供了isnull()和notnull()函数,它们也是Series和DataFrame对象的方法
示例1
importpandasaspd importnumpyasnp df=pd.DataFrame(np.random.randn(5,3), index=['a','c','e','f','h'], columns=['one','two','three']) df=df.reindex(['a','b','c','d','e','f','g','h']) print(df) print('\n') print(df['one'].isnull())
输出结果:
one two three
a 0.036297-0.615260-1.341327
b NaN NaN NaN
c-1.908168-0.779304 0.212467
d NaN NaN NaN
e 0.527409-2.432343 0.190436
f 1.428975-0.364970 1.084148
g NaN NaN NaN
h 0.763328-0.818729 0.240498
a False
b True
c False
d True
e False
f False
g True
h False
Name:one,dtype:bool
示例2
importpandasaspd importnumpyasnp df=pd.DataFrame(np.random.randn(5,3),index=['a','c','e','f', 'h'],columns=['one','two','three']) df=df.reindex(['a','b','c','d','e','f','g','h']) print(df['one'].notnull())
输出结果:
a True
b False
c True
d False
e True
f True
g False
h True
Name:one,dtype:bool
二、缺少数据的计算
- 在求和数据时,NA将被视为0
- 如果数据全部是NA,那么结果将是NA
实例1
importpandasaspd importnumpyasnp df=pd.DataFrame(np.random.randn(5,3),index=['a','c','e','f', 'h'],columns=['one','two','three']) df=df.reindex(['a','b','c','d','e','f','g','h']) print(df) print('\n') print(df['one'].sum())
输出结果:
one two three
a-1.191036 0.945107-0.806292
b NaN NaN NaN
c 0.127794-1.812588-0.466076
d NaN NaN NaN
e 2.358568 0.559081 1.486490
f-0.242589 0.574916-0.831853
g NaN NaN NaN
h-0.328030 1.815404-1.706736
0.7247067964060545
示例2
importpandasaspd df=pd.DataFrame(index=[0,1,2,3,4,5],columns=['one','two']) print(df) print('\n') print(df['one'].sum())
输出结果:
one two
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN
5 NaN NaN0
三、填充缺少数据
Pandas提供了各种方法来清除缺失的值。fillna()函数可以通过几种方法用非空数据“填充”NA值。
用标量值替换NaN
以下程序显示如何用0替换NaN。
importpandasaspd importnumpyasnp df=pd.DataFrame(np.random.randn(3,3),index=['a','c','e'],columns=['one','two','three']) df=df.reindex(['a','b','c']) print(df) print('\n') print("NaNreplacedwith'0':") print(df.fillna(0))
输出结果:
one two three
a-0.479425-1.711840-1.453384
b NaN NaN NaN
c-0.733606-0.813315 0.476788NaNreplacedwith'0':
one two three
a-0.479425-1.711840-1.453384
b 0.000000 0.000000 0.000000
c-0.733606-0.813315 0.476788
在这里填充零值;当然,也可以填写任何其他的值。
替换丢失(或)通用值
很多时候,必须用一些具体的值取代一个通用的值。可以通过应用替换方法来实现这一点。用标量值替换NA是fillna()函数的等效行为。
示例
importpandasaspd df=pd.DataFrame({'one':[10,20,30,40,50,2000],'two':[1000,0,30,40,50,60]}) print(df) print('\n') print(df.replace({1000:10,2000:60}))
输出结果:
one two
0 10 1000
1 20 0
2 30 30
3 40 40
4 50 50
5 2000 60one two
0 10 10
1 20 0
2 30 30
3 40 40
4 50 50
5 60 60
填写NA前进和后退
使用重构索引章节讨论的填充概念,来填补缺失的值。
方法 | 动作 |
---|---|
pad/fill | 填充方法向前 |
bfill/backfill | 填充方法向后 |
示例1
importpandasaspd importnumpyasnp df=pd.DataFrame(np.random.randn(5,3),index=['a','c','e','f', 'h'],columns=['one','two','three']) df=df.reindex(['a','b','c','d','e','f','g','h']) print(df) print('\n') print(df.fillna(method='pad'))
输出结果:
one two three
a-0.023243 1.671621-1.687063
b NaN NaN NaN
c-0.933355 0.609602-0.620189
d NaN NaN NaN
e 0.151455-1.324563-0.598897
f 0.605670-0.924828-1.050643
g NaN NaN NaN
h 0.892414-0.137194-1.101791
one two three
a-0.023243 1.671621-1.687063
b-0.023243 1.671621-1.687063
c-0.933355 0.609602-0.620189
d-0.933355 0.609602-0.620189
e 0.151455-1.324563-0.598897
f 0.605670-0.924828-1.050643
g 0.605670-0.924828-1.050643
h 0.892414-0.137194-1.101791
示例2
importpandasaspd importnumpyasnp df=pd.DataFrame(np.random.randn(5,3),index=['a','c','e','f', 'h'],columns=['one','two','three']) df=df.reindex(['a','b','c','d','e','f','g','h']) print(df.fillna(method='backfill'))
输出结果:
one two three
a 2.278454 1.550483-2.103731
b-0.779530 0.408493 1.247796
c-0.779530 0.408493 1.247796
d 0.262713-1.073215 0.129808
e 0.262713-1.073215 0.129808
f-0.600729 1.310515-0.877586
g 0.395212 0.219146-0.175024
h 0.395212 0.219146-0.175024
四、丢失缺少的值
使用dropna函数和axis参数。默认情况下,axis=0,即在行上应用,这意味着如果行内的任何值是NA,那么整个行被排除。
实例1
importpandasaspd importnumpyasnp df=pd.DataFrame(np.random.randn(5,3),index=['a','c','e','f','h'],columns=['one','two','three']) df=df.reindex(['a','b','c','d','e','f','g','h']) print(df.dropna())
输出结果:
one two three
a-0.719623 0.028103-1.093178
c 0.040312 1.729596 0.451805
e-1.029418 1.920933 1.289485
f 1.217967 1.368064 0.527406
h 0.667855 0.147989-1.035978
示例2
importpandasaspd importnumpyasnp df=pd.DataFrame(np.random.randn(5,3),index=['a','c','e','f', 'h'],columns=['one','two','three']) df=df.reindex(['a','b','c','d','e','f','g','h']) print(df.dropna(axis=1))
输出结果:
EmptyDataFrame
Columns:[]
Index:[a,b,c,d,e,f,g,h]
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持毛票票。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:czq8825#qq.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。