python科学计算之scipy——optimize用法
写在前面
SciPy的optimize模块提供了许多数值优化算法,下面对其中的一些记录。
非线性方程组求解
SciPy中对非线性方程组求解是fslove()函数,它的调用形式一般为fslove(fun,x0),fun是计算非线性方程组的误差函数,它需要一个参数x,fun依靠x来计算线性方程组的每个方程的值(或者叫误差),x0是x的一个初始值。
""" 计算非线性方程组: 5x1+3=0 4x0^2-2sin(x1x2)=0 x1x2-1.5=0 """ ##误差函数 deffun(x): x0,x1,x2=x.tolist() return[5*x1+3,4x0^2-2sin(x1x2),x1x2-1.5] result=optimize.fsolve(fun,[1,1,1]) ##result [-0.70622057-0.6-2.5]
在计算非线性方程中的解时,比如像坐标上升算法,其中需要用到未知数的导数,同样,scipy的fslove()也提供了fprime参数传递未知数的雅各比矩阵从而加速计算,传递的雅各比矩阵每一行时某一方程对各个未知数的导数。对于上面的例子,我们可以写下如下的雅各比矩阵传入。
defj(x): x0,x1,x2=x.tolist() return[[0,5,0],[8*x0,-2*x2*cos(x1*x2],[0,x2,x1]] result=optimize.fsolve(fun,[1,1,1],fprime=j) #result [-0.70622057-0.6-2.5]
scipy的内部在实现fslove时应该时应该是利用了坐标上升算法或者梯度相关优化算法,但本人没有考证,有兴趣的可以看看源码。
最小二乘拟合
关于最小二乘算法的理论这里并不想谈,网上解释的文章也挺多,在optimize模块中,可以使用leastsq()对数据进行最小二乘拟合计算。leastsq()的用法很简单,只需要将计箅误差的函数和待确定参数的初始值传递给它即可。
x=np.array([8.19,2.72,6.39,8.71,4.7,2.66,3.78]) y=np.array([7.01,2.78,6.47,6.71,4.1,4.23,4.05]) defresidual(p): k,b=p returny-(k*x+b) r=optimize.leastsq(residual,[1,0]) k,b=r[0] #printk .613495349193 #printb .79409254326
deffunc(x,p): """ 计算的正弦波:A*sin(2*pi*k*x+theta) """ A,k,theta=p returnA*sin(2*np.pi*k*x+theta) defredis(p,y,x): returny-func(x,p) x=np.linspace(0,2*np.pi,100) A,k,theta=10,0.34,np.pi/6 y0=func(x,[A,k,theta]) #加入噪声 np.random.seed(0) y1=y0+2*np.random.randn(len(x)) p0=[7,0.40,0] #p0是A,k,theta的初始值,y1,x要拟合的数据 plsq=optimize.leastsq(redis,p0,args=(y1,x)) print[A,k,theta]#真是的参数值 printplsq[0]#拟合后的参数值
对于像正弦波或者余弦波的曲线拟合,optimize提供curve_fit()函数,它的使用方式和leastq()稍有不同,它直接计算曲线的值,比如上面的拟合正弦波可以用cureve_fit()来写。
deffunc2(x,p): """ 计算的正弦波:A*sin(2*pi*k*x+theta) """ A,k,theta=p returnA*sin(2*np.pi*k*x+theta) ret,_=optimize.curve_fit(func2,x,y1,p0=p0)
该函数有一个缺点就是对于初始值敏感,如果初始频率和真实频率值差太多,会导致最后无法收敛到真是频率。
局部最小值
optimize模块还提供了常用的最小值算法如:Nelder-Mead、Powell、CG、BFGS、Newton-CG等,在这些最小值计算时,往往会传入一阶导数矩阵(雅各比矩阵)或者二阶导数矩阵(黑塞矩阵)从而加速收敛,这些最优化算法往往不能保证收敛到全局最小值,大部分会收敛到局部极小值。这些函数的调用方式为:
optimize.minimize(target_fun,init_val,method,jac,hess) target_fun:函数的表达式计算; init_val:初始值; method:最小化的算法; jac:雅各比矩阵 hess:黑塞矩阵。
全局最小值算法
全局最小值使用optimize.basinhopping()来实现,这个函数首先要定义一个误差计算方式,比如平方误差函数,niter时迭代的次数,最后还需要一个局部极小值优化方法,minimizer_kwargs传入。比如上面的正弦函数拟合:
deffunc1(x,p): """ 计算的正弦波:A*sin(2*pi*k*x+theta) """ A,k,theta=p returnA*sin(2*np.pi*k*x+theta) deffunc_error(p,y,x): returnnp.sum((y-func1(x,p)**2) result=optimize.basinhopping(func_error,[1,1,1],niter=10, minimizer_kwargs={"method":"L-BFGS-B", "args":(y1,x1)}) ##[1,1,1]是传入的初始值,args是需要拟合的数据
以上这篇python科学计算之scipy——optimize用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持毛票票。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:czq8825#qq.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。