pytorch实现特殊的Module--Sqeuential三种写法
我就废话不多说了,直接上代码吧!
#-*-coding:utf-8-*-
#@Time:2019/7/113:34
#@Author:XiaoMa
importtorchast
fromtorchimportnn
#Sequential的三种写法
net1=nn.Sequential()
net1.add_module('conv',nn.Conv2d(3,3,3))#Conv2D(输入通道数,输出通道数,卷积核大小)
net1.add_module('batchnorm',nn.BatchNorm2d(3))#BatchNorm2d(特征数)
net1.add_module('activation_layer',nn.ReLU())
net2=nn.Sequential(nn.Conv2d(3,3,3),
nn.BatchNorm2d(3),
nn.ReLU()
)
fromcollectionsimportOrderedDict
net3=nn.Sequential(OrderedDict([
('conv1',nn.Conv2d(3,3,3)),
('bh1',nn.BatchNorm2d(3)),
('al',nn.ReLU())
]))
print('net1',net1)
print('net2',net2)
print('net3',net3)
#可根据名字或序号取出子module
print(net1.conv,net2[0],net3.conv1)
输出结果:
net1Sequential( (conv):Conv2d(3,3,kernel_size=(3,3),stride=(1,1)) (batchnorm):BatchNorm2d(3,eps=1e-05,momentum=0.1,affine=True,track_running_stats=True) (activation_layer):ReLU() ) net2Sequential( (0):Conv2d(3,3,kernel_size=(3,3),stride=(1,1)) (1):BatchNorm2d(3,eps=1e-05,momentum=0.1,affine=True,track_running_stats=True) (2):ReLU() ) net3Sequential( (conv1):Conv2d(3,3,kernel_size=(3,3),stride=(1,1)) (bh1):BatchNorm2d(3,eps=1e-05,momentum=0.1,affine=True,track_running_stats=True) (al):ReLU() ) Conv2d(3,3,kernel_size=(3,3),stride=(1,1)) Conv2d(3,3,kernel_size=(3,3),stride=(1,1)) Conv2d(3,3,kernel_size=(3,3),stride=(1,1))
以上这篇pytorch实现特殊的Module--Sqeuential三种写法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持毛票票。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:czq8825#qq.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。