浅谈tensorflow中张量的提取值和赋值
tf.gather和gather_nd从params中收集数值,tf.scatter_nd和tf.scatter_nd_update用updates更新某一张量。严格上说,tf.gather_nd和tf.scatter_nd_update互为逆操作。
已知数值的位置,从张量中提取数值:tf.gather,tf.gather_nd
tf.gatherindices每个元素(标量)是params某个axis的索引,tf.gather_nd中indices最后一个阶对应于索引值。
tf.gather函数
函数原型
gather( params, indices, validate_indices=None, name=None, axis=0 )
params是要查找的张量,indices是要查找值的索引(int32或int64),axis是查找轴,name是操作名。
如果indices是标量
如果indices是向量
如果indices是高阶张量
返回值:
该函数返回值类型与params相同,具体值是从params中收集过来的,形状为
tf.gather_nd函数
函数原型
gather_nd( params, indices, name=None )
indices是K阶张量,包含K-1阶的索引值。它最后一阶是索引,最后一阶维度必须小于等于params的秩。indices最后一阶的维数等于params的秩时,我们得到params的某些元素;indices最后一阶的维数小于params的秩时,我们得到params的切片。
输出张量的形状由indices的K-1阶和params索引到的形状拼接而成,如下面
indices.shape[:-1]+params.shape[indices.shape[-1]:]
参数:
params:被收集的张量。
indices:索引张量。必须是以下类型之一:int32,int64。
name:操作的名称(可选)。
返回值:
该函数返回一个张量.与params具有相同的类型。张量值从indices所给定的索引中收集,并且具有这样的形状:
已知赋值的位置,向张量赋值:tf.scatter_nd,tf.scatter_nd_update
tf.scatter_nd对零张量进行赋值,tf.scatter_nd_update对已有可变的张量进行赋值。
tf.scatter_nd函数 scatter_nd( indices, updates, shape, name=None )
创建一个形状为shape的零张量,将updates赋值到indices指定的位置。
indices是整数张量,最内部维度对应于索引。
indices.shape[-1]<=shape.rank
如果indices.shape[-1]=shape.rank,那么indices直接对应到新张量的单个元素。如果indices.shape[-1] 如果我们要把形状为(4,)的updates赋值给形状为(8,)的零张量,如下图所示。 我们需要这样子做 我们得到这样子的张量 上面代码中,indices的形状是(4,1),updates的形状是(4,),shape的形状是(8,)。 如果我们要在三阶张量中插入两个切片,如下图所示,则应该像下面代码里所说的那样子做。 indices的形状是(2,1),updates的形状是(2,4,4),shape的形状是(4,4,4)。 我们会得到这样子的张量 函数参数 indices:Tensor;必须是以下类型之一:int32,int64;索引值张量。 updates:Tensor;分散到输出的更新。 shape:Tensor;必须与indices具有相同的类型;1-d;得到的张量的形状。 name:操作的名称(可选)。 返回值 此函数返回一个Tensor,它与updates有相同的类型;一个有shape形状的新张量,初始化值为0,部分值根据indices用updates进行更新。 tf.scatter_nd_update函数 函数原型 scatter_nd_update也是把updates里面的值根据indices赋值到另外一个张量中,与scatter_nd不同的是,它是赋值到ref。 ref是秩为P的张量,indices是秩为Q的张量。 indices是整数类型的张量,必须具有这样的形状 indices最内部的维度对应于ref的某个元素或切片。 updates的形状是 如果我们想要把(4,)的向量赋值到(8,)的ref中,我们可以像下面这样子操作。 我们可以得到这样的ref 函数参数 ref:一个可变的Tensor。 indices:一个int32或int64Tensor;一个对ref进行索引的张量. updates:一个Tensor.必须与ref具有相同的类型;更新值张量. use_locking:可选的bool;如果为True,则赋值将受锁定的保护;否则行为是不确定的,但可能表现出较少的争用. name:操作的名称(可选). 返回值: 经过更新的ref。 以上这篇浅谈tensorflow中张量的提取值和赋值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持毛票票。 声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:czq8825#qq.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。
indices.shape[:-1]+shape[indices.shape[-1]:]
indices=tf.constant([[4],[3],[1],[7]])
updates=tf.constant([9,10,11,12])
shape=tf.constant([8])
scatter=tf.scatter_nd(indices,updates,shape)
withtf.Session()assess:
print(sess.run(scatter))
[0,11,0,10,9,0,0,12]
indices.shape[:-1]+shape[indices.shape[-1]:]=(4,)+(,)=(4,)
indices=tf.constant([[0],[2]])
updates=tf.constant([[[5,5,5,5],[6,6,6,6],
[7,7,7,7],[8,8,8,8]],
[[5,5,5,5],[6,6,6,6],
[7,7,7,7],[8,8,8,8]]])
shape=tf.constant([4,4,4])
scatter=tf.scatter_nd(indices,updates,shape)
withtf.Session()assess:
print(sess.run(scatter))
indices.shape[:-1]+shape[indices.shape[-1]:]=(2,)+(4,4)=(2,4,4)
[[[5,5,5,5],[6,6,6,6],[7,7,7,7],[8,8,8,8]],
[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]],
[[5,5,5,5],[6,6,6,6],[7,7,7,7],[8,8,8,8]],
[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]]
scatter_nd_update(
ref,
indices,
updates,
use_locking=True,
name=None
)
ref=tf.Variable([1,2,3,4,5,6,7,8])
indices=tf.constant([[4],[3],[1],[7]])
updates=tf.constant([9,10,11,12])
update=tf.scatter_nd_update(ref,indices,updates)
withtf.Session()assess:
printsess.run(update)
[1,11,3,10,9,6,7,12]