tensorflow通过模型文件,使用tensorboard查看其模型图Graph方式
Google提供了一个工具,TensorBoard,它能以图表的方式分析你在训练过程中汇总的各种数据,其中包括Graph结构。
所以我们可以简单的写几行Pyhton,加载Graph,只在logdir里,输出Graph结构数据,并可以查看其图结构。
执行下述代码,将数据流图保存为图片,在目录F:/tensorflow/graph下生成文件events.out.tfevents.1508420019.XM-PC
importtensorflowastf fromtensorflow.python.platformimportgfile graph=tf.get_default_graph() graphdef=graph.as_graph_def() _=tf.train.import_meta_graph("model.ckpt.metaa") summary_write=tf.summary.FileWriter("./",graph) summary_write.close()
启用tensorboard
我用的python开发环境是Anaconda
(1)打开AnacondaPrompt,输入activatetensorflow进入tensorflow环境;
(2)开启tensorboard,输入如下命令
tensorboard--logdir=F://tensorflow//graph
其中logdir中的参数就是代码中保存graph的路径,如果写为单斜杠,tensorboard可打开,但graphs中显示“Nographdefinitionfileswerefound”,并不显示graph,路径参数改为双斜杠就可以了。
3.用tensorboard查看生成的graph
(1)在谷歌浏览器中打开http://127.0.0.1:6006/,会显示橙色界面;
(2)在第一行的选项卡中选择graphs,即可看到结果。
以上这篇tensorflow通过模型文件,使用tensorboard查看其模型图Graph方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持毛票票。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:czq8825#qq.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。