使用TFRecord存取多个数据案例
TensorFlow提供了一种统一的格式来存储数据,就是TFRecord,它可以统一不同的原始数据格式,并且更加有效地管理不同的属性。
TFRecord格式
TFRecord文件中的数据都是用tf.train.ExampleProtocolBuffer的格式来存储的,tf.train.Example可以被定义为:
messageExample{ Featuresfeatures=1 } messageFeatures{ mapfeature=1 } messageFeature{ oneofkind{ BytesListbytes_list=1 FloatListfloat_list=1 Int64Listint64_list=1 } }
可以看出Example是一个嵌套的数据结构,其中属性名称可以为一个字符串,其取值可以是字符串BytesList、实数列表FloatList或整数列表Int64List。
将数据转化为TFRecord格式
以下代码是将MNIST输入数据转化为TFRecord格式:
#-*-coding:utf-8-*- importtensorflowastf fromtensorflow.examples.tutorials.mnistimportinput_data importnumpyasnp #生成整数型的属性 def_int64_feature(value): returntf.train.Feature(int64_list=tf.train.Int64List(value=[value])) #生成浮点型的属性 def_float_feature(value): returntf.train.Feature(float_list=tf.train.FloatList(value=[value])) #若想保存为数组,则要改成value=value即可 #生成字符串型的属性 def_bytes_feature(value): returntf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) mnist=input_data.read_data_sets("/tensorflow_google",dtype=tf.uint8,one_hot=True) images=mnist.train.images #训练数据所对应的正确答案,可以作为一个属性保存在TFRecord中 labels=mnist.train.labels #训练数据的图像分辨率,这可以作为Example中的一个属性 pixels=images.shape[1] num_examples=mnist.train.num_examples #输出TFRecord文件的地址 filename="/tensorflow_google/mnist_output.tfrecords" #创建一个writer来写TFRecord文件 writer=tf.python_io.TFRecordWriter(filename) forindexinrange(num_examples): #将图像矩阵转换成一个字符串 image_raw=images[index].tostring() #将一个样例转化为ExampleProtocolBuffer,并将所有的信息写入这个数据结构 example=tf.train.Example(features=tf.train.Features(feature={ 'pixels':_int64_feature(pixels), 'label':_int64_feature(np.argmax(labels[index])), 'image_raw':_bytes_feature(image_raw)})) #将一个Example写入TFRecord文件 writer.write(example.SerializeToString()) writer.close()
本程序将MNIST数据集中所有的训练数据存储到了一个TFRecord文件中,若数据量较大,也可以存入多个文件。
从TFRecord文件中读取数据
以下代码可以从上面代码中的TFRecord中读取单个或多个训练数据:
#-*-coding:utf-8-*- importtensorflowastf #创建一个reader来读取TFRecord文件中的样例 reader=tf.TFRecordReader() #创建一个队列来维护输入文件列表 filename_queue=tf.train.string_input_producer(["/Users/gaoyue/文档/Program/tensorflow_google/chapter7" "/mnist_output.tfrecords"]) #从文件中读出一个样例,也可以使用read_up_to函数一次性读取多个样例 #_,serialized_example=reader.read(filename_queue) _,serialized_example=reader.read_up_to(filename_queue,6)#读取6个样例 #解析读入的一个样例,如果需要解析多个样例,可以用parse_example函数 #features=tf.parse_single_example(serialized_example,features={ #解析多个样例 features=tf.parse_example(serialized_example,features={ #TensorFlow提供两种不同的属性解析方法 #第一种是tf.FixedLenFeature,得到的解析结果为Tensor #第二种是tf.VarLenFeature,得到的解析结果为SparseTensor,用于处理稀疏数据 #解析数据的格式需要与写入数据的格式一致 'image_raw':tf.FixedLenFeature([],tf.string), 'pixels':tf.FixedLenFeature([],tf.int64), 'label':tf.FixedLenFeature([],tf.int64), }) #tf.decode_raw可以将字符串解析成图像对应的像素数组 images=tf.decode_raw(features['image_raw'],tf.uint8) labels=tf.cast(features['label'],tf.int32) pixels=tf.cast(features['pixels'],tf.int32) sess=tf.Session() #启动多线程处理输入数据 coord=tf.train.Coordinator() threads=tf.train.start_queue_runners(sess=sess,coord=coord) #每次运行可以读取TFRecord中的一个样例,当所有样例都读完之后,会重头读取 #foriinrange(10): #image,label,pixel=sess.run([images,labels,pixels]) ##print(image,label,pixel) #print(label,pixel) #读取TFRecord中的前6个样例,若加入循环,则会每次从上次输出的地方继续顺序读6个样例 image,label,pixel=sess.run([images,labels,pixels]) print(label,pixel) sess.close() >>[734618][784784784784784784]
输出结果显示,从TFRecord文件中顺序读出前6个样例。
以上这篇使用TFRecord存取多个数据案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持毛票票。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:czq8825#qq.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。