用什么库写 Python 命令行程序(示例代码详解)
一、前言
在近半年的Python命令行旅程中,我们依次学习了argparse、docopt、click和fire库的特点和用法,逐步了解到Python命令行库的设计哲学与演变。本文作为本次旅程的终点,希望从一个更高的视角对这些库进行横向对比,总结它们的异同点和使用场景,以期在应对不同场景时能够分析利弊,选择合适的库为己所用。
本系列文章默认使用Python3作为解释器进行讲解。若你仍在使用Python2,请注意两者之间语法和库的使用差异哦~
二、设计理念
在讨论各个库的设计理念之前,我们先设计一个计算器程序,其实这个例子在argparse库的第一篇讲解中出现过,也就是:
- 命令行程序接受一个位置参数,它能出现多次,且是数字
- 默认情况下,命令行程序会求出给定的一串数字的最大值
- 如果指定了选项参数--sum,那么就会将求出给定的一串数字的和
希望从各个库实现该例子的代码中能进一步体会它们的设计理念。
2.1、argparse
argparse的设计理念就是提供给你最细粒度的控制,你需要详细地告诉它参数是选项参数还是位置参数、参数值的类型是什么、该参数的处理动作是怎样的。总之,它就像是一个没有智能分析能力的初代机器人,你需要告诉它明确的信息,它才会根据给定的信息去帮助你做事情。
以下示例为argparse实现的计算器程序:
importargparse #1.设置解析器 parser=argparse.ArgumentParser(description='CalculatorProgram.') #2.定义参数 #添加位置参数nums,在帮助信息中显示为num #其类型为int,且支持输入多个,且至少需要提供一个 parser.add_argument('nums',metavar='num',type=int,nargs='+', help='anumfortheaccumulator') #添加选项参数--sum,该参数被parser解析后所对应的属性名为accumulate #若不提供--sum,默认值为max函数,否则为sum函数 parser.add_argument('--sum',dest='accumulate',action='store_const', const=sum,default=max, help='sumthenums(default:findthemax)') #3.解析参数 args=parser.parse_args(['--sum','1','2','3']) print(args)#结果:Namespace(accumulate=,nums=[1,2,3]) #4.业务逻辑 result=args.accumulate(args.nums) print(result)#基于上文的['--sum','1','2','3']参数,accumulate为sum函数,其结果为6
从上述示例可以看到,我们需要通过add_argument很明确地告诉argparse参数长什么样:
- 它是位置参数nums,还是选项参数--sum
- 它的类型是什么,比如type=int表示类型是int
- 这个参数能重复出现几次,比如nargs='+'表示至少提供1个
- 参数的是存什么的,比如action='store_const'表示存常量
然后它才根据给定的这些元信息来解析命令行参数(也就是示例中的['--sum','1','2','3'])。
这是很计算机的思维,虽然冗长,但也带来了灵活性。
2.2、docopt
从argparse的理念可以看出,它是命令式的。这时候docopt另辟蹊径,声明式是不是也可以?一个命令行程序的帮助信息其实已然包含了这个命令行的完整元信息,那不就可以通过定义帮助信息来定义命令行?docopt就是基于这样的想法去设计的。
声明式的好处在于只要你掌握了声明式的语法,那么定义命令行的元信息就会很简单。
以下示例为docopt实现的计算器程序:
#1.定义接口描述/帮助信息 """CalculatorProgram. Usage: calculator.py[--sum]... calculator.py(-h|--help) Options: -h--helpShowhelp. --sumSumthenums(default:findthemax). """ fromdocoptimportdocopt #2.解析命令行 arguments=docopt(__doc__,options_first=True,argv=['--sum','1','2','3']) print(arguments)#结果:{'--help':False,'--sum':True,' ':['1','2','3']} #3.业务逻辑 nums=(int(num)fornuminarguments[' ']) ifarguments['--sum']: result=sum(nums) else: result=max(nums) print(result)#基于上文的['--sum','1','2','3']参数,处理函数为sum函数,其结果为6
从上述示例可以看到,我们通过__doc__定义了接口描述,这和argparse中add_argument是等价的,然后docopt便会根据这个元信息把命令行参数转换为一个字典。业务逻辑中就需要对这个字典进行处理。
对比与argparse:
- 对于更为复杂的命令程序,元信息的定义上docopt会更加简单
- 然而在业务逻辑的处理上,由于argparse在一些简单参数的处理上会更加便捷(比如示例中的情形),相对来说docopt转换为字典后就把所有处理交给业务逻辑的方式会更加复杂
2.3、click
命令行程序本质上是定义参数和处理参数,而处理参数的逻辑一定是与所定义的参数有关联的。那可不可以用函数和装饰器来实现处理参数逻辑与定义参数的关联呢?而click正好就是以这种使用方式来设计的。
click使用装饰器的好处就在于用装饰器优雅的语法将参数定义和处理逻辑整合在一起,从而暗示了路由关系。相比于argparse和docopt需要自行对解析后的参数来做路由关系,简单了不少。
以下示例为click实现的计算器程序:
importsys importclick sys.argv=['calculator.py','--sum','1','2','3'] #2.定义参数 @click.command() @click.argument('nums',nargs=-1,type=int) @click.option('--sum','use_sum',is_flag=True,help='sumthenums(default:findthemax)') #1.业务逻辑 defcalculator(nums,use_sum): """CalculatorProgram.""" print(nums,use_sum)#输出:(1,2,3)True ifuse_sum: result=sum(nums) else: result=max(nums) print(result)#基于上文的['--sum','1','2','3']参数,处理函数为sum函数,其结果为6 calculator()
从上述示例可以看出,参数和对应的处理逻辑非常好地绑定在了一起,看上去就很直观,使得我们可以明确了解参数会怎么处理,这在有大量参数时显得尤为重要,这边是click相比于argparse和docopt最明显的优势。
此外,click还内置了很多实用工具和额外能力,比如说Bash补全、颜色、分页支持、进度条等诸多实用功能,可谓是如虎添翼。
2.4、fire
fire则是用一种面向广义对象的方式来玩转命令行,这种对象可以是类、函数、字典、列表等,它更加灵活,也更加简单。你都不需要定义参数类型,fire会根据输入和参数默认值来自动判断,这无疑进一步简化了实现过程。
以下示例为fire实现的计算器程序:
importsys importfire sys.argv=['calculator.py','1','2','3','--sum'] builtin_sum=sum #1.业务逻辑 #sum=False,暗示它是一个选项参数--sum,不提供的时候为False #*nums暗示它是一个能提供任意数量的位置参数 defcalculator(sum=False,*nums): """CalculatorProgram.""" print(sum,nums)#输出:True(1,2,3) ifsum: result=builtin_sum(nums) else: result=max(nums) print(result)#基于上文的['1','2','3','--sum']参数,处理函数为sum函数,其结果为6 fire.Fire(calculator)
从上述示例可以看出,fire提供的方式无疑是最简单、并且最Pythonic的了。我们只需关注业务逻辑,而命令行参数的定义则和函数参数的定义融为了一体。
不过,有利自然也有弊,比如nums并没有说是什么类型,也就意味着输入字符串'abc'也是合法的,这就意味着一个严格的命令行程序必须在自己的业务逻辑中来对期望的类型进行约束。
三、横向对比
最后,我们横向对比下argparse、docopt、click和fire库的各项功能和特点:
Python的命令行库种类繁多、各具特色。结合上面的总结,可以选择出符合使用场景的库,如果几个库都符合,那么就根据你更偏爱的风格来选择。这些库都很优秀,其背后的思想很是值得我们学习和扩展。
总结
以上所述是小编给大家介绍的用什么库写Python命令行程序,希望对大家有所帮助,也非常感谢大家对毛票票网站的支持!
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:czq8825#qq.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。