python之 matplotlib和pandas绘图教程
不得不说使用python库matplotlib绘图确实比较丑,但使用起来还算是比较方便,做自己的小小研究可以使用。这里记录一些统计作图方法,包括pandas作图和plt作图。
前提是先导入第三方库吧
importpandasaspd importmatplotlib.pyplotasplt importnumpyasnp
然后以下这两句用于正常显示中文标签什么的。
plt.rcParams['font.sans-serif']=['SimHei']#用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False#用来正常显示负号
当然还有一些最基本的步骤:
plt.xticks(x,xtk,size=12,rotation=50)#设置字体大小和字体倾斜度 plt.xlabel(u'城市')#x轴标签 plt.ylabel(u'数量') plt.title(u'朋友所在城市')#图的名称 plt.legend()#正常显示标题 plt.show()#显示图像 plt.close()#绘图后养成习惯性的关掉
对于pandas中的二维数据框,可以直接作图(Series类型),简单的折线图或者曲线图如下:
sdata.plot(color='r',style='-o') plt.show()
如果没有用pandas,直接作曲线图,可以这样写:
plot(x,y,color='blue',linewidth=2.5,linestyle="--")
1,柱状图
rects1=plt.bar(#(x,data)就是所要画的二维数据 left=x,#x是X坐标轴数据,即每个块的x轴起始位置 height=data,#data是Y坐标轴的数据,即每个块的y轴高度 width=[0.1,0.2,0.3],#每一个块的显示宽度 bottom=[1,2,3],#每一个块的底部高度 color='y',#块的颜色 edgecolor='g',#块的边界颜色 linewidth=2,#块的线条宽度 xerr=1,#x轴误差bar yerr=1,#y轴误差bar ecolor='r',#误差bar的颜色 capsize=1,#误差bar的线条宽度 orientation='vertical',#块的方向(horizontal,vertical) align="center",#块的位置(center,left,right) hold=None ) plt.show()
2,饼图
plot2=plt.pie(data,#每个饼块的实际数据,如果大于1,会进行归一化,计算percentage explode=[0.0,0.1,0.2],#每个饼块离中心的距离 colors=['y','r','g'],#每个饼块的颜色 labels=['women','men','unknown'],#每个饼块的标签 labeldistance=1.2,#每个饼块标签到中心的距离 autopct='%1.1f%%',#百分比的显示格式 pctdistance=0.4,#百分比到中心的距离 shadow=True,#每个饼块是否显示阴影 startangle=0,#默认从x轴正半轴逆时针起 radius=1.0#饼块的半径 ) plt.axis('equal')#显示为圆形,避免比例压缩为椭圆 plt.show()
3,共享X轴,Y轴左右轴标(帕累托分析图)
数据样例如下,名称为va,类型为Series,左边为职位名称,右边为数量:
sales4140 technical2720 support2229 IT1227 product_mng902 marketing858 RandD787 accounting767 hr739 management630
作图:
fr=pd.Series(va.values.cumsum()/va.values.sum()) va.plot(kind='bar') fr.plot(color='r',secondary_y=True,style='-o') plt.annotate(format(fr[7],'.2%'),xy=(7,fr[7]),xytext=(7*0.9,fr[7]*0.9), arrowprops=dict(arrowstyle='->',connectionstyle='arc3,rad=.2'))#用于注释图形指标 #plt.rcParams['font.sans-serif']=['SimHei']#用来正常显示中文标签 #plt.rcParams['axes.unicode_minus']=False#用来正常显示负号 #plt1=plt.pie(va.values, #labels=va.index, #autopct='%1.1f%%') plt.xticks(rotation=50)#设置字体大小和字体倾斜度 plt.show()
左边为出现的频率,右边为累积百分比(这里数据以降序排列较好,便于直观地观察),效果如下:
在pandas中,曲线图可以直接画,比如data中有多个属性,可以直接使用data.plot()。使用plt,若各个属性需要共用XY轴,那么可以重复plot即可。
4,箱型图
使用pandas画箱型图简单方便,但是注释比较麻烦,可以用annotate添加异常点的注释。若使用之前的数据va,则先创建二维数据框再画图。如果有多个列为数字类型,那么可以画每个列的箱型图,这里只有一列数据,如下:
pd.DataFrame(va).boxplot() plt.show()
使用plt直接进行作图:
plt.boxplot(data,labels=[], sym='o',whis=1.5)
其中,data可以是一维的,也可多维,若为多维则lables为每一维度的标签。sym为异常值的形状,whis为调节垂直线段的长度。效果如下:
5,多张图在一张画布中,即多个子图
使用plt:
plt.subplot(221) plt.plot(x,y1,'r-',lw=2) plt.subplot(222) plt.plot(x,y2)
使用pandas:
data.plot(subplots=True,color=['r','b'],style=['-o','-']) plt.show()
排版方式有不同,pandas是垂直排列,plt可以自己指定位置。pandas效果如下:
补充:PythonDataFrame多条件筛选使用&
我就废话不多说了,大家还是直接看代码吧~
DF6 Out[42]: BCD 01B10.750 13C8.875 22T58.000 32L57.000 43Y46.000
DF6[(DF6.B>1)&(DF6.D>10)]
Out[45]: BCD 22T58.0 32L57.0 43Y46.0
以上为个人经验,希望能给大家一个参考,也希望大家多多支持毛票票。如有错误或未考虑完全的地方,望不吝赐教。
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:czq8825#qq.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。