R语言中的vector(向量),array(数组)使用总结
对于那些有一点编程经验的人来说,vector,matrix,array,list,data.frame就相当于编程语言中的容器,因为只是将R看做数据处理工具所以它们的底层是靠什么实现的,内存怎么处理的具体也不要深究。
R语言很奇怪的是它是面向对象的语言,所以经常会调用系统的方法,而且更奇怪的是总是调用“谓语”的方法,用起来像是写句子一样,记起来真是让人费解。比如is.vector(),read.table(),as.vector()、、
直接开始吧:(由于习惯,大部分用"="代替"<-")
一、向量vector,
1.是最基本的数据容器,里面的数据必须是同一类型,先看基本用法:
a<-c(1,2,3,4,5,6,7,8,9)
或者赋值函数assign,
assign("a",c(1,2,3,4,5,6,7,8,9)) >is.vector(a) [1]TRUE >is.matrix(a) [1]FALSE >is.array(a) [1]FALSE >is.list(a) [1]FALSE
或者利用随机分布函数,rnrom(n,mean,sd),runif(n,min,max)、、、
>b=runif(20,min=1,max=20) >b [1]2.18101618.4176059.7483792.1228491.2818714.099617 [7]14.16234818.0348637.4646649.59922718.9732591.900773 [13]8.99522311.04891611.6671313.85927517.9929881.089552 [19]13.49006112.864029
或者按照一定的步长:
>a=seq(1,20,by=3) >a [1]14710131619
或者重复:
>s=rep(a,times=3) >s [1]147101316191471013161914710131619
逻辑向量:
>b=a>8;b [1]FALSEFALSEFALSETRUETRUETRUETRUE
缺失数据用大写NA表示,数据不确定用NaN表示,数据是无穷用Inf表示(一会全大写,一会大写加小写,一会首字母大写,真是醉了),判断是否为空数据用函数is.na(),判断是否不确定用函数is.nan(),数据是否有限用is.finite(),数据是否为无穷用函数is.infinite():
>z=c(1:3,Na);z Error:object'Na'notfound >z=c(1:3,NA);z [1]123NA >is.na(z) [1]FALSEFALSEFALSETRUE
将缺失的数据赋值为0:
>z[is.na(z)]=0;z [1]1230
下面将这几个有问题的数据放在一个向量中:
>z=c(0/1,0/0,1/0,NA);z [1]0NaNInfNA >is.na(z) [1]FALSETRUEFALSETRUE >is.nan(z) [1]FALSETRUEFALSEFALSE >is.finite(z) [1]TRUEFALSEFALSEFALSE >is.infinite(z) [1]FALSEFALSETRUEFALSE
2.vector中元素的下标引用.
>a=round(runif(9,min=1,max=9)) >a [1]388827353
可以看见,与容器不同,vector的下标是从1开始的:
>a[0] numeric(0) >a[1] [1]3
选取第2和第3个数,引用非常方便:
>a[c(2,3)] [1]88
引用除了第一个值的所有数,用了减号"-":
>a[-c[1]] [1]88827353
3.vector作为R语言工具,需要了解vector的各种运算。
①+-×÷,其他运算如log,exp,cos,sqrt等也相似。其意义是对应的向量的每个元素分别做运算,
>x=c(1,2,3) >y=c(2,3,4) >z=2*x+y-1 >z [1]369 >x^2 [1]149 >cos(x) [1]0.5403023-0.4161468-0.9899925 >sqrt(x) [1]1.0000001.4142141.732051
②与向量有关的函数,min(x),max(x),sum(x),range(x),太简单就不在细说,需要强调的是which.min(x),这个还是蛮重要的。
>a=rnorm(10,mean=5,sd=2) >a [1]5.9145592.6043465.3425729.0068636.5472217.5197817.330211 [8]8.3229566.8754915.883626 >which.max(a) [1]4 >which.min(a) [1]2 >a[which.max(a)] [1]9.006863 >a[which.min(a)] [1]2.604346
其他的如sd(a),var(a),length(a),sort(a),分别是求方差,标准差,长度,排序。与python不同R语言的vector所有操作都不会改变vector本身的值。
4.由于R是一种基于对象的语言,R的对象分为单纯对象和复合对象两种,单纯对象的所有元素都是同一数据类型(数值、字符串),元素不再是对象。复合对象的元素可是是不同的类型,每个元素是一个对象。
R的对象都有两个基本的属性:mode和length,向量的类型为:logical(逻辑型)、numeric(数值型)、complex(复数型)、character(字符型)。
>b=c(0:9) >b [1]0123456789 >is.numeric(b) [1]TRUE >is.character(b) [1]FALSE >c=as.character(b) >c [1]"0""1""2""3""4""5""6""7""8""9" >is.numeric(c) [1]FALSE >is.character(c) [1]TRUE
二、数组array
多维的同一类型集合(字符型、数值型、逻辑型、复数型),R可以很容易地生成和处理数组,特别是矩阵matrix是一个二维数组。
1.可以通过定义dim(维度)将向量变成matrix。
a=c(1,3,4,5,6,7,8,9,3) >dim(a)=c(3,3) >a [,1][,2][,3] [1,]158 [2,]369 [3,]473
或者:
>a=array(a,dim=c(3,3)) >a [,1][,2][,3] [1,]158 [2,]369 [3,]473
或者:
>a=matrix(a,nrow=3,ncol=3);a [,1][,2][,3] [1,]158 [2,]369 [3,]473 >is.vector(a) [1]FALSE >is.matrix(a) [1]TRUE >is.array(a) [1]TRUE >is.list(a) [1]FALSE
可以发现,a已经通过定义维度将其变成了一个矩阵(matrix)和数组(array),下面将讲matrix其实是一个二维的array。
2.下标引用
>a=c(1:24) >dim(a)=c(2,3,4) >a[2,1,2] [1]8 >a[1,2:3,2:3] [,1][,2] [1,]915 [2,]1117 >a[1,,] [,1][,2][,3][,4] [1,]171319 [2,]391521 [3,]5111723
到此这篇关于R语言中的vector(向量),array(数组)使用总结的文章就介绍到这了,更多相关R语言向量数组内容请搜索毛票票以前的文章或继续浏览下面的相关文章希望大家以后多多支持毛票票!
声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:czq8825#qq.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。