格雷厄姆扫描算法
凸包是可以覆盖所有给定数据点的最小封闭区域。
Graham的Scan算法会找到凸包的角点。在该算法中,首先选择最低点。该点是凸包的起点。剩余的n-1个顶点从起点开始按逆时针方向排序。如果两个或多个点形成相同的角度,则删除除距起点最远的点之外的所有相同角度的点。
从剩余的点开始,将它们压入堆栈。并逐个从堆栈中取出项目,当堆栈顶点、第二个顶点和新选择的点points[i]的方向不是逆时针时,检查后,将points[i]插入堆栈。
输入和输出
Input:
Set of points: {(-7,8), (-4,6), (2,6), (6,4), (8,6), (7,-2), (4,-6), (8,-7),(0,0), (3,-2),(6,-10),(0,-6),(-9,-5),(-8,-2),(-8,0),(-10,3),(-2,2),(-10,4)}
Output:
凸包的边界点是:
(-9, -5) (-10, 3) (-10, 4) (-7, 8) (8, 6) (8, -7) (6, -10)算法
findConvexHull(points, n)
输入-点集,点数。
输出-凸包的边界点。
Begin
minY := points[0].y
min := 0
for i := 1 to n-1 do
y := points[i].y
if y < minY or minY = y and points[i].x < points[min].x, then
minY := points[i].y
min := i
done
swap points[0] and points[min]
p0 := points[0]
sort points from points[1] to end
arrSize := 1
for i := 1 to n, do
when i < n-1 and (p0, points[i], points[i+1]) are collinear, do
i := i + 1
done
points[arrSize] := points[i]
arrSize := arrSize + 1
done
if arrSize < 3, then
return cHullPoints
push points[0] into stack
push points[1] into stack
push points[2] into stack
for i := 3 to arrSize, do
while top of stack, item below the top and points[i] is not in
anticlockwise rotation, do
delete top element from stack
done
push points[i] into stack
done
while stack is not empty, do
item stack top element into cHullPoints
pop from stack
done
End示例
#include输出结果#include #include #include using namespace std; struct point { //定义二维平面的点 int x, y; }; point p0; //习惯了另外两点 point secondTop(stack &stk) { point tempPoint = stk.top(); stk.pop(); point res = stk.top(); //获取第二个顶部元素 stk.push(tempPoint); //再次推上一个顶部 return res; } int squaredDist(point p1, point p2) { return ((p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y)); } int direction(point a, point b, point c) { int val = (b.y-a.y)*(c.x-b.x)-(b.x-a.x)*(c.y-b.y); if (val == 0) return 0; //colinear else if(val < 0) return 2; //逆时针方向 return 1; //顺时针方向 } int comp(const void *point1, const void*point2) { point *p1 = (point*)point1; point *p2 = (point*)point2; int dir = direction(p0, *p1, *p2); if(dir == 0) return (squaredDist(p0, *p2) >= squaredDist(p0, *p1))?-1 : 1; return (dir==2)? -1 : 1; } vector findConvexHull(point points[], int n) { vector convexHullPoints; int minY = points[0].y, min = 0; for(int i = 1; i stk; stk.push(points[0]); stk.push(points[1]); stk.push(points[2]); for(int i = 3; i result; result = findConvexHull(points, n); cout << "凸包的边界点是: "< ::iterator it; for(it = result.begin(); it!=result.end(); it++) cout << "(" << it->x << ", " < y <<") "; }
凸包的边界点是: (-9, -5) (-10, 3) (-10, 4) (-7, 8) (8, 6) (8, -7) (6, -10)