如何将大数与R中输出中的所有数字相乘?
要将大数与输出中的所有数字相乘,我们可以使用mul.bigzgmp包的函数。例如,如果我们有两个向量,比如x和y,每个向量都包含大数字,那么这些数字的乘法将返回乘法的所有数字,可以使用命令来完成。mul.bigz(x,y)
示例1
加载gmp包并乘以包含大数值的向量-
library(gmp) x1<-sample(1111111111:2000000000000,50,replace=TRUE) x1输出结果
[1] 1.293832e+12 2.536972e+11 3.335227e+11 3.226438e+11 1.136448e+12 [6] 1.325300e+12 1.246996e+12 7.080295e+11 1.449619e+12 1.975834e+12 [11] 1.156376e+12 1.511857e+11 1.513911e+12 1.917348e+12 2.271347e+11 [16] 2.282941e+11 3.337803e+10 3.172004e+11 2.763222e+11 3.303886e+11 [21] 6.027465e+11 1.193693e+12 1.150794e+12 1.606291e+12 1.650506e+11 [26] 6.523897e+11 1.465895e+11 2.352293e+11 1.963742e+12 4.443070e+11 [31] 1.007327e+12 1.869703e+12 7.239362e+10 1.095902e+12 1.424147e+12 [36] 9.770790e+11 1.932433e+12 9.026232e+10 2.368810e+11 1.134507e+12 [41] 1.124247e+12 4.035505e+11 3.874052e+11 1.406390e+12 9.311580e+11 [46] 1.839350e+12 8.464039e+11 1.594256e+12 1.957315e+12 1.893819e+12
y1<-sample(1111111111:2000000000000,50,replace=TRUE) y1
[1] 9.757425e+11 1.239017e+12 1.927748e+12 1.103209e+12 1.252230e+12 [6] 1.913173e+12 2.805219e+11 1.616006e+12 5.303620e+11 1.772930e+12 [11] 5.785048e+11 1.941363e+12 9.501223e+11 1.194540e+11 9.843814e+11 [16] 1.275164e+12 1.149460e+12 4.931133e+11 2.878916e+11 9.617385e+11 [21] 8.967935e+10 2.457275e+11 1.983314e+12 1.423445e+12 1.460684e+12 [26] 8.755605e+11 1.049124e+10 8.055053e+11 1.892869e+12 1.332796e+12 [31] 1.786657e+11 1.891837e+12 1.313989e+12 5.162383e+11 7.123930e+11 [36] 1.056097e+12 1.002861e+12 1.596295e+12 8.812744e+11 1.822768e+12 [41] 1.986071e+12 8.144542e+11 1.313296e+12 1.620869e+12 1.089260e+12 [46] 3.866624e+11 3.544274e+10 1.084693e+12 7.736200e+11 1.877018e+12
mul.bigz(x1,y1)
长度为50的大整数('bigz')对象-
[1] 1262446842630801588182744 314335263114643191308025 [3] 642947682842452511840295 355943440341646141283918 [5] 1423093232364797810527056 2535528390293637035755604 [7] 349809716738243739838950 1144179721857914606449920 [9] 768823090887235726818380 3503014875764875234341320 [11] 668969310756954173204964 293506305139251500087165 [13] 1438400321537589823512060 229034861133298648495137 [15] 223587218906467123271286 291112568955671946722508 [17] 38366694886332866751264 156415710483362775931498 [19] 79550851780737264040110 317747464761895523642170 [21] 54053916388740069983216 293323055941642114974812 [23] 2282386213646481329573654 2286467890398288112173213 [25] 241086633841183470615700 571206608578182798317112 [27] 1537904707923988857285 189478455160811542797552 [29] 3717105891067599244132614 592170438410277921759253 [31] 179974758886936119715152 3537173034917116273935748 [33] 95124429522919713206664 565746451368620014494732 [35] 1014552600906136853771796 1031890578442049614902030 [37] 1937962067406571980502803 144085305439484188977162 [39] 208757163619377106848154 2067942795859405778109039 [41] 2232833800223648463028000 328673404564488209660349 [43] 508777582753809846486000 2279572731830085975246096 [45] 1014273211890090760161484 711207747512107582798215 [47] 29998871689014859842094 1729279092817166762068120 [49] 1514217632310567242102048 3554730826730585234031496
例2
x2<-sample(10000000000000:99999999999999,20,replace=TRUE) x2输出结果
[1] 6.398159e+13 3.449662e+13 8.759618e+13 7.827480e+13 9.839172e+13 [6] 3.358731e+13 8.155870e+13 7.192655e+13 3.195451e+13 2.746856e+13 [11] 9.679501e+13 1.096879e+13 5.691945e+13 9.353371e+13 7.356300e+13 [16] 6.404821e+13 5.270617e+13 9.270720e+13 2.331605e+13 1.808134e+13
y2<-sample(10000000000000:99999999999999,20,replace=TRUE) y2
[1] 1.578880e+13 5.392305e+13 1.986629e+13 3.337975e+13 3.774220e+13 [6] 7.179982e+13 7.803195e+13 9.259463e+13 7.186874e+13 8.144816e+13 [11] 5.213669e+13 6.158151e+13 1.950020e+13 4.154611e+13 1.073097e+13 [16] 3.751478e+13 2.246565e+13 7.609600e+13 3.265019e+13 4.636295e+13
mul.bigz(x2,y2)
长度为20的大整数('bigz')对象-
[1] 1010192180202107970994971432 1860163031405667083998113108 [3] 1740211585288594421359825344 2612793315213298928893124768 [5] 3713520183073253035371431712 2411562809935191309538846932 [7] 6364184340808390699280865988 6660011976326566517283305006 [9] 2296529992728176200215691276 2237263799718018254172544399 [11] 5046571255171509579300643832 675474862453600877730576637 [13] 1109940803643771324345467256 3885961688721650122562301624 [15] 789402715998041502331341836 2402754200327592234158069949 [17] 1184078490689530317843364890 7054647206647305451800626298 [19] 761273516615824233808304301 838304372728305526321584927