Python - 如何按天对 Pandas DataFrame 进行分组?
我们将使用.pandasDataFrame对PandasDataFrame进行分组groupby()。使用grouper功能选择要使用的列。对于下面显示的汽车销售记录示例,我们将按天分组并计算按天间隔的注册价格总和。
在groupby()grouper方法中将频率设置为天数间隔,这意味着,如果频率为7D,则表示数据按每月7天的间隔分组,直到日期列中给出的最后一个日期。
首先,假设以下是我们的三列PandasDataFrame-
import pandas as pd #其中一列为Date_of_Purchase的数据框 dataFrame = pd.DataFrame( { "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"], "Date_of_Purchase": [ pd.Timestamp("2021-06-10"), pd.Timestamp("2021-07-11"), pd.Timestamp("2021-06-25"), pd.Timestamp("2021-06-29"), pd.Timestamp("2021-03-20"), pd.Timestamp("2021-01-22"), pd.Timestamp("2021-01-06"), pd.Timestamp("2021-01-04"), pd.Timestamp("2021-05-09") ], "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350] } )
接下来,使用Grouper在groupby函数中选择Date_of_Purchase列。频率设置为7D,即7天的间隔分组到列中提到的最后一个日期-
print"\nGroup Dataframe by 7 days...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='7D')).sum()
示例
以下是代码-
import pandas as pd #其中一列为Date_of_Purchase的数据框 dataFrame = pd.DataFrame( { "Car": ["Audi", "Lexus", "Tesla", "Mercedes", "BMW", "Toyota", "Nissan", "Bentley", "Mustang"], "Date_of_Purchase": [ pd.Timestamp("2021-06-10"), pd.Timestamp("2021-07-11"), pd.Timestamp("2021-06-25"), pd.Timestamp("2021-06-29"), pd.Timestamp("2021-03-20"), pd.Timestamp("2021-01-22"), pd.Timestamp("2021-01-06"), pd.Timestamp("2021-01-04"), pd.Timestamp("2021-05-09") ], "Reg_Price": [1000, 1400, 1100, 900, 1700, 1800, 1300, 1150, 1350] } ) print"DataFrame...\n",dataFrame #GroupertoselectDate_of_Purchasecolumnwithingroupbyfunction print("\nGroup Dataframe by 7 days...\n",dataFrame.groupby(pd.Grouper(key='Date_of_Purchase', axis=0, freq='7D')).sum() )输出结果
这将产生以下输出-
DataFrame... Car Date_of_Purchase Reg_Price 0 Audi 2021-06-10 1000 1 Lexus 2021-07-11 1400 2 Tesla 2021-06-25 1100 3 Mercedes 2021-06-29 900 4 BMW 2021-03-20 1700 5 Toyota 2021-01-22 1800 6 Nissan 2021-01-06 1300 7 Bentley 2021-01-04 1150 8 Mustang 2021-05-09 1350 Group Dataframe by 7 days... Reg_Price Date_of_Purchase 2021-01-04 2450.0 2021-01-11 NaN 2021-01-18 1800.0 2021-01-25 NaN 2021-02-01 NaN 2021-02-08 NaN 2021-02-15 NaN 2021-02-22 NaN 2021-03-01 NaN 2021-03-08 NaN 2021-03-15 1700.0 2021-03-22 NaN 2021-03-29 NaN 2021-04-05 NaN 2021-04-12 NaN 2021-04-19 NaN 2021-04-26 NaN 2021-05-03 1350.0 2021-05-10 NaN 2021-05-17 NaN 2021-05-24 NaN 2021-05-31 NaN 2021-06-07 1000.0 2021-06-14 NaN 2021-06-21 1100.0 2021-06-28 900.0 2021-07-05 1400.0