智能驾驶十年,理想商业模式为何「难产」
在多位受访人的观点中,L4玩家们在战略方向上摇摆不定,是商业模式受挫的表现之一。
一方面开源,积极探索其他的变现方式。另一方面也要节流,尽可能把钱花在刀刃上。
"这个行业里滥竽充数的人其实不少。要有慧眼识英雄的能力,投资人的钱才更是钱,而不是浪费。"张文明感慨道。
斯年智驾 CEO 何贝则告诉新智驾,他们现在越来越看重「效率」。
因为自动驾驶的变现周期长,如果员工的努力方向与企业需求产生偏差,很可能会拉长研发周期,无益于公司正向发展。
要避免这种事倍功半情况出现,就需要领导层有较强的统战能力,能够对项目进度以及员工状态有清晰的把握。
相比之下,L2 市场由于可进行前装量产,现金回流速度可能会更快一些,而且商业模式已经有了可借鉴的模板——
特斯拉已经证明"软件定义汽车"的路子走得通,而 Mobileye 以及一些国际供应商巨头则给 L2 赛道内的玩家打了样。
尽管自己所在的公司与 Mobileye 之间存在竞争关系,何天(化名)也丝毫没有掩盖对 Mobileye 的认可:
Mobileye 真的很强。安波福、采埃孚、恒润采用的都是 Mobileye 的方案。说实话,国内还有一段要追赶的距离。
不过,在市场日新月异的变化中,国产的 L2 玩家也抓住了机遇,走出了定制化的差异化道路。
至于很多人阔谈的"定制化会压缩利润空间"的观点,其实不必太担心。
目前,不少玩家们开始在定制化和通用化之间寻求平衡点。如果一个项目需要投入大量的研发精力,但利润很少,量也不大,可能会倾向于直接放弃。
顾小叶认为,前几年行业处于投研阶段,亏损是一个非常客观的自然现象。经过弯道超车,公司已经拿下了前装量产的定点项目,"公司产品能够满足客户的需求,商业模式其实就已经 work 了,只是需要时间去摊薄之前的研发成本。"
现在大家面临的挑战,可能更多的在于人才资源的匮乏。
毕竟,一旦车企认可了某个供应商,双方的合作很有可能会长久地持续下去,规模效应和口碑效应也会逐渐显现出来。如果没有足够的人手,业务的吞吐量无法做大。
同时,眼下的 L2 市场已经发展得较为成熟。车企也有意往更高级的智能驾驶去探索,如果供应商的技术实力跟不上,很有可能陷入尴尬的境地。
新事物发展难免充满曲折
尽管文章开篇讲到,2011 年,国内的智能驾驶从实验室向物理世界迈出重要一步。但多位业内人士与新智驾交流的过程中指出,智能驾驶在商业方面的尝试或许没有那么久。
挚途科技按行业发展特征梳理的结果显示,2014-2016 年为智能驾驶的概念阶段,以 Waymo 为首做技术原型及未来概念设想;2016-2020 年为原型技术Demo展示阶段,自动驾驶企业在各个细分场景百家争鸣;2020 年行业开始步入商业落地阶段。
而且,现在还不断有新玩家在加码这一领域。
前段时间,AI 四小龙之一依图卖掉了自己的医疗业务。其前员工的一番话很有意思:
安防和医疗都不是依图未来的主业,安防只是规模比医疗大,哪一天无人车或者芯片做起来,安防也能像医疗一样卖掉。
话语间无不流露出对智能驾驶的看好。
此前,商汤、格灵深瞳等 AI 公司也早已在智能驾驶领域进行布局。据新智驾了解,一些 AI 公司的人才也确实流向了智能驾驶行业。
但智能驾驶,真的是 AI 玩家的迦南地吗?
可能未必。
AI 企业虽技术优势傍身,但难以仅仅通过算法来实现单点突破、快速占领市场。
在踏入智能驾驶领域之前,何天就职于某家 AI 安防小巨头。对此,他颇有话语权:
AI 公司搞自动驾驶的不会多,甚至大家只是说说,玩不下去。
何天进一步作了解释,只有深入了解后才会知道这个领域的难度。
算法方面,智能驾驶涉及人身安全,对检测的准确性和实时性要求非常高,AI 行业根本比不了。认知如果转变不过来很难做好。
经验方面,车企非常看重量产经验,因为这代表供应商对整套流程、质量体系是有认知的,意味着供应商的工程化能力是已经得到了一定验证的。而 AI 公司没有这些积累。
资源方面,以往,AI 公司的很多项目都是与政府对接,政府更在乎有没有,但车企在乎的是好不好。毕竟消费者会用脚投票。
更重要的是,智能驾驶自身的发展本就充满着曲折,包括上文所说的因高投入、高人才、高亏损导致的盈利挑战。
而且,步入商业落地阶段后,资本给玩家们带来的压力也会越来越大。
在挚途科技杨永勋看来,资本是逐利的。在行业开启商业化落地的新阶段,除非能够证明企业自身技术领先于行业竞争对手,否则,如果现有技术缺少可落地的商业模式和商业路径,企业将很难获得资本的青睐,融资难度也将增大,不得不面临被兼并或退出市场的风险。
新智驾在齐勤(化名)口中得到了类似的观点。
齐勤是一位一级市场投资人。大概在一个多月前,他还在寻觅市面上好的智能驾驶标的。不过就在这几天,他们的一个智能驾驶项目被风控团队毙掉了,
即便是行业里的龙头企业,它的营收指标和财务指标不满足 A 股上市的要求,美股那边又收紧。没有退出路径,大家现在都比较谨慎。
另一方面,最近蔚来的事故被曝在半月内连出两起车祸,太平洋彼岸的特斯拉则因辅助驾驶系统而受到调查。这些案例很有可能倒逼着法律法规快速完善。
总 结
智能驾驶的盈利困境是一个既定事实,解决问题的正确方式不是逃避,而是放在桌子面上,大家一起来探讨问题在哪里,出路在哪里。
不过,无论是 L2 还是 L4,只凭现阶段的盈利状态来判断商业模式的好坏,可能有点片面。
有人欣赏眼前的灿烂,有人期待更远的未来,其实都没有对错。
尽管智能驾驶的发展道路充满不确定性,但这不妨碍它的正向发展,或许我们也应该给予它更多的耐心。
雷锋网雷锋网(公众号:雷锋网)雷锋网
。